Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hetero enantioselective

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Jorgensen K. A. Development and application of catalytic highly enantioselective hetero-Diels-Alder reactions of aldehydes and ketones in Curr. Trends Org. Synth.,... [Pg.303]

Associated to copper(II) pre-catalysts, bis(oxazolines) also allowed the asymmetric Diels-Alder and hetero Diels-Alder transformations to be achieved in nearly quantitative yield and high diastereo- and enantioselectivities. Optically active sulfoximines, with their nitrogen-coordinating site located at close proximity to the stereogenic sulfur atom, have also proven their efficiency as copper ligands for these asymmetric cycloadditions. Other precursors for this Lewis acid-catalyzed transformation have been described (e.g., zinc salts, ruthenium derivatives, or rare earth complexes) which, when associated to bis(oxazolines), pyridine-oxazolines or pyridine-bis(oxazolines), led to efficient catalysts. [Pg.94]

Similar transformations have been performed with Danishefsky s diene and glyoxylate esters [85] catalyzed by bis (oxazoHne)-metal complexes to afford the hetero Diels-Alder product in 70% isolated yield and up to 72% ee. Jorgensen [86,87] reported a highly enantioselective, catalytic hetero Diels-Alder reaction of ketones and similar chiral copper(II) complexes leading to enantiomeric excesses up to 99% (Scheme 31, reaction 2). They also described [88] a highly diastereo- and enantioselective catalytic hetero Diels-Alder reaction of /I, y-imsaturated a-ketoesters with electron-rich alkenes... [Pg.118]

The enantioselectivity obtained in the hetero-Diels-Alder reaction (Scheme 12) was low (18% ee). This is, in part, due to the important temperature effect. For example, 50% ee was obtained in reactions carried out in homogeneous phase at - 60 °C and 95% ee in reactions at - 78 °C. However, at 0 °C the enantioselectivity dropped to 28% ee, a value closer to that obtained with the immobilized catalyst at the same temperature. Recycling was investigated and the solid was used four times with the same activity maintained. The 6b-Cu(OTf)2 catalyst proved to be less effective for this reaction and less stable in terms of recycling, a situation in agreement with the results obtained with exchanged catalysts [53]. [Pg.183]

The scope of this methodology was extended to the enantioselective hetero-Diels-Alder reaction between 1,3-cyclohexadiene and ethylglyoxylate,... [Pg.190]

A new noncarbohydrate-based enantioselective approach to (—)-swainsonine was developed in which the key step was an aqueous intramolecular asymmetric hetero-Diels-Alder reaction of an acylni-troso diene (Eq. 12.57).128 Under aqueous conditions there was significant enhancement of the trans stereoselectivity relative to the reaction under conventional nonaqueous conditions. [Pg.406]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]

Finally, the discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels-Alder reactions was made possible by a combinatorial approach.121 The object was to find a chiral titanium catalyst for the reaction of aldehydes (51) with Danishefsky s diene (91), with formation of cycloadduct (92) in >99% enantipurity (Equation (11)). [Pg.543]

In 1993, we reported that various unsaturated heterocycles can be alkylated with Et-, wPr- and nBuMgCl in the presence of optically pure (EBTHI)ZrCl2 (3a) or (EBTHI)Zr-binol (3b) to afford the derived unsaturated products in >90% ee (cf. 5 6, Scheme 2) [4a]. Many of the simpler five- and six-membered starting materials are available commercially or can be prepared by established procedures. In contrast, catalytic enantioselective reactions involving unsaturated medium ring hetero cycles were not a trivial undertaking the synthesis of these olefinic substrates, by the extant methods, was prohibitively cumbersome. [Pg.117]

Stable aryl boronates derived from tartaric acid catalyze the reaction of cyclo-pentadiene with vinyl aldehyde with high selectivity. Chiral acyloxy borane (CAB), derived from tartaric acid, has proved to be a very powerful catalyst for the enantioselective Diels-Alder reaction and hetero Diels-Alder reaction. Scheme 5 23 presents an example of a CAB 73 (R = H) catalyzed Diels-Alder reaction of a-bromo-a,/i-cnal 74 with cyclopentadiene. The reaction product is another important intermediate for prostaglandin synthesis. In the presence of... [Pg.283]

Jorgensen s group44a carried out the reaction using the anhydrous form of chiral bis(oxazoline) coordinated copper complex. Complex 106 containing 83 as the chiral ligand was found to be the most effective. As shown in Scheme 5-32, the asymmetric hetero Diels-Alder reaction of //.y-unsaturated a-keto esters with acyclic enol ethers results in products with excellent yield and enantioselectivity. [Pg.292]

Jorgensen s group reported the aza Diels-Alder reactions in the presence of several chiral catalysts.52 They found that chiral bis(oxazoline) ligands 81, 83, 103, 104, and 105, which were effective in asymmetric oxo hetero Diels-Alder reactions, induced the aza Diels-Alder reaction of a-imino ester with Danishefsky s diene with only poor to moderate enantioselectivity. Selected results are listed in Scheme 5-40. [Pg.299]

Bis(oxazoline)-type complexes, which have been found useful for asymmetric aldol reactions, Diels-Alder, and hetero Diels-Alder reactions can also be used for inducing 1,3-dipolar reactions. Chiral nickel complex 180, which can be prepared by reacting equimolar amounts of Ni(C10)4 6H20 and the corresponding (J ,J )-4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline) (DBFOX/Ph) in dichloromethane, can be used for highly endo-selective and enantioselective asymmetric nitrone cycloaddition. The presence of 4 A molecular sieves is essential to attain high selectivities.88 In the absence of molecular sieves, both the diastereoselectivity and enantioselectivity will be lower. Representative results are shown in Scheme 5-55. [Pg.311]

Scheme 13. Enantioselective synthesis of hirsutine 67 by a Knoevenagel-hetero-Diels-Alder solvolysis hydrogenation process... Scheme 13. Enantioselective synthesis of hirsutine 67 by a Knoevenagel-hetero-Diels-Alder solvolysis hydrogenation process...
Table 10. Catalytic enantioselective epoxide ring opening with 4-methoxyphenol 105 promoted by gallium hetero-bimetallic complexes in the presence of MS 4A. Table 10. Catalytic enantioselective epoxide ring opening with 4-methoxyphenol 105 promoted by gallium hetero-bimetallic complexes in the presence of MS 4A.
T. Iida, N. Yamamoto, N. Matsunaga, H.-G. Woo, M. Shibasaki, Enantioselective Ring Opening of Epoxides with 4-Methoxyphenol Catalyzed by Gallium Hetero-bimetallic Complexes An Efficient Method for the Synthesis of Optically Active 1,2-Diol Monoethers, Angew. Chem Int. Ed. EngL 1998,32 2223-2226. [Pg.122]

Asymmetric hydrogenation of prochiral ketones,s Ketones substituted in the a- or (3-position by diverse polar groups, particularly OH,OR,NR2,COOR, can undergo highly enantioselective hydrogenation catalyzed by BINAP-Ru complexes. A key factor of asymmetric induction is undoubtedly chelation of the carbonyl group and the hetero atom to the Ru atom. [Pg.40]

Various substituted unsaturated acylphosphonates participate in highly dias-tereoselective and enantioselective cycloadditions with vinyl ethers, Eqs. 177 and 178. It is intriguing to note that catalysts [(.V,.Y)-f-Bu-box]Cu (OTf)2 (269c) and [(.V,.S )-Ph-box]Cu (OTf>2 (269d) possessing the same sense of chirality afford opposite antipodes of the cycloadduct in comparable selectivities. Cyclopentadiene was found to react with acylphosphonates to give a mixture of the normal Diels-Alder adduct and the inverse electron demand hetero-Diels-Alder adduct (35 65), Eq. 179. This result may be contrasted with crotonylimide, which furnishes the normal demand Diels-Alder adduct exclusively. [Pg.108]


See other pages where Hetero enantioselective is mentioned: [Pg.26]    [Pg.151]    [Pg.186]    [Pg.187]    [Pg.212]    [Pg.343]    [Pg.119]    [Pg.121]    [Pg.128]    [Pg.262]    [Pg.190]    [Pg.192]    [Pg.193]    [Pg.195]    [Pg.408]    [Pg.144]    [Pg.390]    [Pg.413]    [Pg.416]    [Pg.210]    [Pg.230]    [Pg.252]    [Pg.317]    [Pg.272]    [Pg.62]    [Pg.1208]    [Pg.1266]    [Pg.291]    [Pg.39]    [Pg.114]    [Pg.118]    [Pg.120]   
See also in sourсe #XX -- [ Pg.99 , Pg.538 ]

See also in sourсe #XX -- [ Pg.576 ]




SEARCH



Enantioselective reactions hetero-Diels-Alder reaction

Enantioselectivity hetero-Diels-Alder reactions

Enol ethers enantioselective hetero-Diels-Alder reaction

Hetero-Diels-Alder reaction enantioselective

© 2024 chempedia.info