Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective borohydride

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]

A Special Case Enantioselective Borohydride Reduction of Ketones... [Pg.61]

Reduction of Ketones Using Enantioselective Borohydride Reagents... [Pg.63]

By modification of the reaction condition, biaryl lactones could be efficiently reduced to the corresponding biaryl products by this cobalt-catalyzed system. Various axially chiral biaryl compounds were obtained with high ee values (80-93% ee) by the atmpo-enantioselective borohydride reduction with the dynamic kinetic resolution of biaryl lactones in the presence of EtOH and l-(2-pyridinyl)ethanol (eq 39). [Pg.414]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

The reaction of butyllithium with 1-naphthaldehyde cyclohexylimine in the presence of (/C )-l,2-diphenylethane-1,2-diol dimethyl ether in toluene at —78 °C, followed by treatment with acetate buffer, gave 2-butyl-1,2-dihydronaphthalene-l-carbaldehyde, which was then reduced with sodium borohydride in methanol to afford (1 R,2.S)-2-butyl-1 -hydroxymcthyl-1,2-dihydronaphthalene in 80% overall yield with 91 % ee83. Similarly, the enantioselective conjugate addition of organolithium reagents to several a,/J-unsaturated aldimines took place in the presence of C2-symmetric chiral diethers, such as (/, / )-1,2-butanediol dimethyl ether and (/, / )- ,2-diphenylethane-1,2-diol dimethyl ether. [Pg.909]

COOH or NHCOCH3, for example, 2-phenyl-l-butene. Enantioselective reduction of certain alkenes has also been achieved by reducing with baker s yeast. Hydrogenation with Ni2B on borohydride exchange resin (BER) has also been... [Pg.1004]

A cobalt complex containing this type of ligand is effective in the sodium borohydride-mediated enantioselective reduction of a variety of a,/ -unsaturated carboxylates. As can be seen from Scheme 6-8, in the presence of a catalytic amount of a complex formed in situ from C0CI2 and chiral ligand 11, reduction proceeds smoothly, giving product with up to 96% ee. The chiral ligand can easily be recovered by treating the reaction mixture with acetic acid. [Pg.342]

Asymmetric reduction of dialkyl ketones. The borohydride 1 reduces dialkyl ketones with low enantioselectivity. However, treatment of the lithium dihydri-doborate 2 with methanesulfonic acid provides Reagent I, which consists of 1 equiv. of R,R-1 and 0.2 equiv. of 2,5-dimethylborolanyl mesylate, which serves as a... [Pg.145]

Although similar efforts have been devoted to related polymer systems (Overberger and Cho, 1968 Overberger and Dixon, 1977 Okamoto, 1978), large enantioselectivity has not been observed. Goldberg et al. (1978) conducted borohydride reduction of phenyl ketones in micelles of the chiral surfactant [44]. The result was disappointing, since the maximal enantioselectivity was only 1.66% for phenyl propyl ketone. A much better optical yield was reported when this reaction was carried out under phase-transfer conditions (Masse and Parayre, 1976). The cholic acid micelle and bovine serum albumin exhibited the relatively high enantioselectivity in the reduction of trifluoroacetophenone (Baba ef al., 1978). [Pg.461]

The applications of sodium acyloxyborohydrides, formed from sodium borohydrides in carboxylic acid media, are reviewed. ° Useful reviews of the stereoselective reduction of endocyclic C=N compounds and of the enantioselective reduction of ketones have appeared. ... [Pg.245]

The reduction of an unsymmetrical ketone creates a new stereo center. Because of the importance of hydroxy groups both in synthesis and in relation to the properties of molecules, including biological activity, there has been a great deal of effort directed toward enantioselective reduction of ketones. One approach is to use chiral borohydride reagents.92 Boranes derived from chiral alkenes can be converted to borohydrides, and there has been much study of the enantioselectivity of these reagents. Several of the reagents are commercially available. [Pg.278]

Although sodium borohydride cannot reduce unactivated pyrimidines, it can reduce the polarized C=N bonds in dihydropyrimidines to their tetrahydro derivatives. For example, the reduction of the dihydropyrimidinone 537 can be performed enantioselectively with sodium borohydride to give the tetrahydropyrimidinone 538 in 85% yield <199608201 >. [Pg.182]

A different approach to enantiotopic group differentiation in bicyclic anhydrides consists of their two-step conversion, first with (/ )-2-amino-2-phcnylethanol to chiral imides 3, then by diastereoselective reduction with sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) to the corresponding chiral hydroxy lactames 4, which may be converted to the corresponding lactones 5 via reduction with sodium borohydride and cyclization of the hydroxyalkyl amides 101 The overall yield is good and the enantioselectivity ranges from moderate to good. Absolute configurations of the lactones are based on chemical correlation. [Pg.626]

Similarly to the case of amino acids, hydroxy acids can also be deracemized by combining an enantioselective oxidation with a non-enantioselective reduction with sodium borohydride. For example, the group of Soda has reported the transformation of DL-lactate into D-lactate in >99% (Scheme 5.38) [78]. [Pg.137]

Various benzophenones and aryl alkyl ketones substituted with a fluorine atom on the ortho position were effectively converted into the corresponding alcohols with high to excellent enantioselectivities in the presence of the optically active ketoim- inatocobalt(II) complexes (14). The combination of o-F substituent and a modified lithium borohydride reagent contributed to the high yield and high enantioselectivity (88-96% ee).316... [Pg.129]

High enantioselectivities (up to 94%) are obtained in the sodium borohydride reduction of aliphatic ketones using a tartaric acid-derived boronic ester (TarB-N02) as a chiral catalyst. A mechanism (Scheme 14) involving an acyloxyborohydride intermediate has been postulated.319... [Pg.130]

With sodium borohydride and catalytic amounts of titanyl acetoacetonate, a,fi-unsaturated carbonyl compounds give allyl alcohols regioselectively, whereas a-diketones and acyloins are reduced to vicinal diols.325 Enantioselectivities in the reduction of acetophenone, catalysed by 1,3,2-oxazaborolidones, have been examined using the AM1-SCF MO method. The optimized geometries, thermal enthalpies, and entropies of R and S transition states in the stereo-controlling steps of the reduction have been obtained.326... [Pg.131]

The a-amination of aldehydes and subsequent reduction to form oxazolidinones (Scheme 7.6) was developed by the Jorgensen group [7]. In the presence of 10 mol% L-proline as catalyst a variety of aldehydes reacted with azodicarboxylates, 3a and 3a, affording the oxazolidinones 7 after subsequent reduction with borohydride and cyclization. Selected examples of the synthesis of products 7, which were obtained in yields up to 92% and with enantioselectivity up to 95% ee, are shown in Scheme 7.6. [Pg.248]

In the phase-transfer processes discussed in Section 11.2 it is assumed that the anionic hydride source, i.e. borohydride or a hypervalent hydrosilicate, forms an ion-pair with the chiral cationic phase-transfer catalyst. As a consequence, hydride transfer becomes enantioselective. An alternative is that the nucleophilic activator needed to effect hydride transfer from a hydrosilane can act as the chiral inducer itself (Scheme 11.6). [Pg.319]

A diphenylprolinol derivative, having hydrophobic perfluoroalkyl phase tags, has been synthesized and used as a pre-catalyst to generate in situ a fluorous oxaz-aborolidine catalyst for the reduction of prochiral ketones with borohydride. The system afforded high enantioselectivities and the pre-catalyst is easily separated and recycled.272 Reduction of enantiopure A-p-toluenesulfinyl ketimines derived from 2-pyridyl ketones with sodium borohydride affords A-p-toluenesulfinylamines with good yields and diastereoselectivities.273... [Pg.117]

The boron atom dominates the reactivity of the boracyclic compounds because of its inherent Lewis acidity. Consequently, there have been very few reports on the reactivity of substituents attached to the ring carbon atoms in the five-membered boronated cyclic systems. Singaram and co-workers developed a novel catalyst 31 based on dicarboxylic acid derivative of 1,3,2-dioxaborolane for the asymmetric reduction of prochiral ketones 32. This catalyst reduces a wide variety of ketones enantioselectively in the presence of a co-reductant such as LiBH4. The mechanism involves the coordination of ketone 32 with the chiral boronate 31 and the conjugation of borohydride with carboxylic acid to furnish the chiral borohydride complex 34. Subsequent transfer of hydride from the least hindered face of the ketone yields the corresponding alcohol 35 in high ee (Scheme 3) <20060PD949>. [Pg.620]

Enantioselective reduction of ketones.1 Sodium borohydride aged with L-tar-taric acid can effect enantioselective reduction of ketones bearing an a-substitueut... [Pg.304]


See other pages where Enantioselective borohydride is mentioned: [Pg.144]    [Pg.414]    [Pg.253]    [Pg.144]    [Pg.414]    [Pg.253]    [Pg.439]    [Pg.415]    [Pg.417]    [Pg.220]    [Pg.117]    [Pg.36]    [Pg.98]    [Pg.155]    [Pg.145]    [Pg.117]    [Pg.47]    [Pg.27]    [Pg.358]    [Pg.32]    [Pg.92]    [Pg.54]    [Pg.45]    [Pg.24]    [Pg.668]    [Pg.207]    [Pg.75]    [Pg.17]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Borohydride reduction, ketones enantioselective

Enantioselective reductions, sodium borohydride

Reduction of Ketones Using Enantioselective Borohydride Reagents

© 2024 chempedia.info