Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat chemical reactors

The use of microwaves for heating chemical reactors has increased dramatically over the past decade [428]. [Pg.101]

Induction heating is used to heat steel reactor vessels in the chemical process industry (5). The heat produced in the walls is conducted to the material within. Multisectioned cods are used to provide controlled heat input to the process material as it passes through the reactor. Figure 6 illustrates a cross section of such a typical installation. [Pg.128]

The most effective phosphoms production technology uses a submerged arc furnace. The submerged arc furnace performs three functions chemical reactor, heat-exchanger, and gas—soHd filter, respectively, each of which requires a significant amount of preparation for the soHd furnace feed materials. [Pg.348]

A thermal oxidizer is a chemical reactor in which the reaction is activated by heat and is characterized by a specific rate of reactant consumption. There are at least two chemical reactants, an oxidizing agent and a reducing agent. The rate of reaction is related both to the nature and to the concentration of reactants, and to the conditions of activation, ie, the temperature (activation), turbulence (mixing of reactants), and time of interaction. [Pg.501]

Variables It is possible to identify a large number of variables that influence the design and performance of a chemical reactor with heat transfer, from the vessel size and type catalyst distribution among the beds catalyst type, size, and porosity to the geometry of the heat-transfer surface, such as tube diameter, length, pitch, and so on. Experience has shown, however, that the reactor temperature, and often also the pressure, are the primary variables feed compositions and velocities are of secondary importance and the geometric characteristics of the catalyst and heat-exchange provisions are tertiary factors. Tertiary factors are usually set by standard plant practice. Many of the major optimization studies cited by Westerterp et al. (1984), for instance, are devoted to reactor temperature as a means of optimization. [Pg.705]

A number of factors limit the accuracy with which parameters for the design of commercial equipment can be determined. The parameters may depend on transport properties for heat and mass transfer that have been determined under nonreacting conditions. Inevitably, subtle differences exist between large and small scale. Experimental uncertainty is also a factor, so that under good conditions with modern equipment kinetic parameters can never be determined more precisely than 5 to 10 percent (Hofmann, in de Lasa, Chemical Reactor Design and Technology, Martinus Nijhoff, 1986, p. 72). [Pg.707]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

The value of tire heat transfer coefficient of die gas is dependent on die rate of flow of the gas, and on whether the gas is in streamline or turbulent flow. This factor depends on the flow rate of tire gas and on physical properties of the gas, namely the density and viscosity. In the application of models of chemical reactors in which gas-solid reactions are caiTied out, it is useful to define a dimensionless number criterion which can be used to determine the state of flow of the gas no matter what the physical dimensions of the reactor and its solid content. Such a criterion which is used is the Reynolds number of the gas. For example, the characteristic length in tire definition of this number when a gas is flowing along a mbe is the diameter of the tube. The value of the Reynolds number when the gas is in streamline, or linear flow, is less than about 2000, and above this number the gas is in mrbulent flow. For the flow... [Pg.277]

This involves knowledge of chemistry, by the factors distinguishing the micro-kinetics of chemical reactions and macro-kinetics used to describe the physical transport phenomena. The complexity of the chemical system and insufficient knowledge of the details requires that reactions are lumped, and kinetics expressed with the aid of empirical rate constants. Physical effects in chemical reactors are difficult to eliminate from the chemical rate processes. Non-uniformities in the velocity, and temperature profiles, with interphase, intraparticle heat, and mass transfer tend to distort the kinetic data. These make the analyses and scale-up of a reactor more difficult. Reaction rate data obtained from laboratory studies without a proper account of the physical effects can produce erroneous rate expressions. Here, chemical reactor flow models using matliematical expressions show how physical... [Pg.1116]

A chemical reactor, 1 m in diameter and 5 m long, operates at a temperature of 1073 K, It is covered with a 500 mm thickness of lagging of thermal conductivity 0.1 W/m K. The heat loss from the cylindrical surface to the surroundings is 3.5 kW. What is the heat transfer coefficient from the surface of the lagging to the surroundings at a temperature of 293 K How would the heat loss be altered if the coefficient were halved... [Pg.850]

The earth itself is the reaction vessel and chemical plant. The complicated reaction chemistry and thermodynantics involve ntixers, reactors, heat exchangers, separators, and flnid flow pathways that are a scrambled design by nature. Only the sketchiest of flowsheets can be drawn. The chemical reactor has complex and ill-defined geometry and must be operated in intrinsically transient modes by remote control. Overcoming these difficulties is a trae frontier for chemical engineering research. [Pg.96]

Chapter 7 has two goals. The first is to show how reaction rate expressions, SI a, b,..., T), are obtained from experimental data. The second is to review the thermodynamic underpinnings for calculating reaction equilibria, heats of reactions and heat capacities needed for the rigorous design of chemical reactors. [Pg.209]

Thermod5mamics is a fundamental engineering science that has many applications to chemical reactor design. Here we give a summary of two important topics determination of heat capacities and heats of reaction for inclusion in energy balances, and determination of free energies of reaction to calculate equihbrium compositions and to aid in the determination of reverse reaction... [Pg.226]

The equivalent of radial flow for flat-plate geometries is Vy. The governing equations are similar to those for Vy. However, the various corrections for Vy are seldom necessary. The reason for this is that the distance Y is usually so small that diffusion in the y-direction tends to eliminate the composition and temperature differences that cause Vy. That is precisely why flat-plate geometries are used as chemical reactors and for laminar heat transfer. [Pg.303]

Values for the various parameters in these equations can be estimated from published correlations. See Suggestions for Further Reading. It turns out, however, that bubbling fluidized beds do not perform particularly well as chemical reactors. At or near incipient fluidization, the reactor approximates piston flow. The small catalyst particles give effectiveness factors near 1, and the pressure drop—equal to the weight of the catalyst—is moderate. However, the catalyst particles are essentially quiescent so that heat transfer to the vessel walls is poor. At higher flow rates, the bubbles promote mixing in the emulsion phase and enhance heat transfer, but at the cost of increased axial dispersion. [Pg.416]

The basic issues of scaleup are the same for pol5mier reactors as for ordinary chemical reactors. The primary problem is that the capacity for heat and mass transfer increases less rapidly than the reactor volume and throughput. The remedies are also similar, but the high viscosities characteristic of polymers... [Pg.503]

Intensification of Heat Transfer in Chemical Reactors Heat Exchanger Reactors... [Pg.261]

I 72 Intensification of Heat Transfer in Chemical Reactors Heat Exchanger Reactors Table 12.5 Effusivity values according to the reactor material. [Pg.270]

C.H. (1997) Compact heat exchangers as chemical reactors for process intensification (PI). Process Intensification in Practice, BHR Group Conference Series, Publication No. 28, pp. 175-189. [Pg.286]


See other pages where Heat chemical reactors is mentioned: [Pg.414]    [Pg.152]    [Pg.504]    [Pg.704]    [Pg.707]    [Pg.1093]    [Pg.2075]    [Pg.7]    [Pg.27]    [Pg.218]    [Pg.219]    [Pg.1046]    [Pg.135]    [Pg.84]    [Pg.554]    [Pg.4]    [Pg.285]    [Pg.261]    [Pg.263]    [Pg.331]    [Pg.349]   
See also in sourсe #XX -- [ Pg.459 ]

See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Chemical heating

Chemical reactor heat balance

Chemical reactor with heat exchanger

Chemical reactors

Chemical reactors Heat transfer

Chemical reactors Heat transfer applications

Chemical reactors external heat exchange reactor

Chemical reactors heat-exchanger reactor

Reactors chemical reactor

© 2024 chempedia.info