Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Headspace principle

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

Principle. The content of 1,4-dioxane in ether sulfates is determined by headspace gas chromatography according to the standard additions method. The method is suitable for all ether sulfates and gives reliable results independent of chain length distribution and water content. [Pg.680]

The principle of this determination is the same as for the above spectrophotometric methodology. Alkylenebis(dithiocarbamates) are decomposed with hydrochloric acid and stannous chloride in a closed glass headspace flask at elevated temperature. An... [Pg.1095]

Principles and Characteristics In boiling under reflux procedures a small amount of ground polymer (typically 3g) is placed in a headspace jar (typically 100 mL) and solvent (typically 30 mL) is added. After sealing, the jar is placed in an oven at a temperature where the solvent slowly refluxes. The solvent is, therefore, at the highest temperature possible without applying an external pressure. Consequently, reflux extractions tend to be much faster than Soxhlet extractions. Examples are Soxtec , Soxtherm , FEXTRA and intermittent extraction. Whilst, in theory, partitioning of the analyte between the polymer and solvent prevents complete extraction, this hardly ever constitutes a problem in practice. As the quantity of solvent is much larger than that of the polymer, and the partition coefficients usually favour the solvent, very low additive levels in the polymer result at equilibrium. Any solvent or solvent mixture can be used. [Pg.67]

Principles and Characteristics Pare et al. [475] have patented another approach to extraction, the Microwave-Assisted Process (MAP ). In MAP the microwaves (2.45 GHz, 500 W) directly heat the material to be extracted, which is immersed in a microwave transparent solvent (such as hexane, benzene or iso-octane). MAP offers a radical change from conventional sample preparation work in the analytical laboratory. The technology was first introduced for liquid-phase extraction but has been extended to gas-phase extraction (headspace analysis). MAP constitutes a relatively new series of technologies that relate to novel methods of enhancing chemistry using microwave energy [476]. [Pg.115]

The principles behind MAP liquid-phase and gas-phase extractions are fundamentally similar and rely on the use of microwaves to selectively apply energy to a matrix rather than to the environment surrounding it. MAP gas-phase extractions (MAP-HS) give better sensitivity than the conventional static headspace extraction method. MAP-HS may also be applied in dynamic applications. This allows the application of a prolonged, low-power irradiation, or of a multi-pulse irradiation of the sample, thus providing a means to extract all of the volatile analytes from the matrix [477]. [Pg.116]

Principles and Characteristics Extraction or dissolution methods are usually followed by a separation technique prior to subsequent analysis or detection. While coupling of a sample preparation and a chromatographic separation technique is well established (Section 7.1), hyphenation to spectroscopic analysis is more novel and limited. By elimination of the chromatographic column from the sequence precol-umn-column-postcolumn, essentially a chemical sensor remains which ensures short total analysis times (1-2 min). Examples are headspace analysis via a sampling valve or direct injection of vapours into a mass spectrometer (TD-MS see also Section 6.4). In... [Pg.449]

Dravnieks, A. and O Donnell, A. Principles and some techniques ofhigh-resolution headspace analysis, / Agric. FoodChem., 19(6) 1049-1056, 1971. [Pg.1652]

Hence, most of the relevant proton-transfer reactions involving H3O+ are slightly exoergic, and H3O+ will perform proton-transfer reactions with nearly any kind of VOC in the headspace of food products. However, H3O+ does not react with the natural components of air such as O2, N2, CO2, CO or others (see Table 15.4). The exoergicity of the proton-transfer reaction with most VOCs, however, is low enough that breakup seldom occurs. On the basis of this ionisation principle, a PTR-MS setup was developed applicable to trace-gas analysis, and aimed at speed, sensitivity, versatility and simple handling. [Pg.339]

Headspace is a sampling device used in tandem with a gas chromatograph. It is used in the determination of volatile compounds contained in a matrix which does not lend itself to direct analysis by chromatography. The basic principle is very simple, as described in the following examples. [Pg.381]

The Basic Protocol describes the determination of water activity of a product using a chilled mirror dew-point water activity meter. Dew point is a primary measurement of vapor pressure that has been in use for decades (Harris, 1995). Dew-point instruments are accurate, fast, simple to use, and precise (Richard and Labuza, 1990 Snavely et al., 1990 Roa and Tapia de Daza, 1991). In a dew-point instrument, water activity is measured by equilibrating the liquid-phase water in the food sample with the vapor-phase water in the headspace, and then measuring the vapor pressure of the headspace. The basic principle involved in dew-point determinations of vapor pressure in air is that air may be cooled without change in water content until it saturates. The dew-point temperature is the temperature at which the air reaches saturation. It is determined in practice by measuring... [Pg.41]

The key principle involved in the electronic nose concept is the transfer of the total headspace of a sample to a sensor array that detects the presence of volatile compounds in the headspace and a pattern of signals is provided that are dependent on the selectivity and sensitivity of sensors and the characteristics of the volatile compounds in the headspace [2]. [Pg.756]

In this approach, which takes various forms, accurate headspace analyses are done in systems in which known aqueous concentrations are established. The principle was first demonstrated quantitatively by Hussam and Carr (1985) and has been developed by Perlinger (1990) and Resendes et al. (1992) to probe partitioning in systems in which appreciable sorption occurs. Schoene and Steinhauses (1985) and Ettre et al. (1993) have described an automated system of this type. [Pg.94]

The working principle is as follows The level of butadiene in a food or food simulant is determined by headspace gas chromatography (HSGC) with automated sample injection and by flame ionisation detection (FID). Quantification is achieved using an internal standard (n-pentane) with calibration against relevant food simulant samples fortified with known amounts of butadiene. Confirmation of butadiene levels is car-... [Pg.318]

SPME is a patented sample preparation method for GC applications (32-36). The solvent-free technique was developed in 1989 by Janusz Pawliszyn (http. /Avww.science.uwaterloo.ca/ -janusz/spme.html) at the University of Waterloo in Ontario, Canada, and a manual device made by Supelco, Inc. has been available since 1993. In 1996, Varian Associates, Inc., constructed the first SPME autosampler. SPME involves exposing a fused silica fiber that has been coated with a non-volatile polymer to a sample or its headspace. The absorbed analytes are thermally desorbed in the injector of a gas chromatograph for separation and quantification. The fiber is mounted in a syringe-like holder which protects the fiber during storage and I netration of septa on the sample vial and in the GC injector. This device is operated like an ordinary GC syringe for sampling and injection. The extraction principle can be described as an equilibrium process in which the analyte partitions between the fiber and the aqueous phase. [Pg.214]

Headspace GC-MS is the preferred method for the analysis of very volatile migrants. Practically the same GC conditions can be used as for GC-MS. Due to the coupling to MS, identification is also relatively easy. The heating time and temperature are the main experimental variables. The major drawback of headspace GC-MS is quantification. As a result of the principle of headspace GC-MS, i.e., partitioning of compounds between gas phase and liquid phase, the chemical properties will have a significant influence on the partition of each molecule between gas phase and liquid phase. Therefore, quantification is almost solely possible by using external standards of the same compound (Grob and Barry 2004). [Pg.107]

Although the static and multiple headspace modes use similar equipment, the two rely on rather different principles. On the other hand, purge and trap, and dynamic headspace, possess the same foundation, the only difference between them being the location of the tubing used to transfer the carrier gas to the sample container. [Pg.103]

Vapour-phase calibration (VPC) is based on the principle that the concentration of the volatile analyte in the gas phase can be determined by external-standard calibration. If the total amount present in the vial is known, the concentration in the sample phase at equilibrium is calculated from the difference. This technique, where the distribution of a volatile compound between two phases in a headspace vial is determined by using a pure vapour as reference, was originally implemented by Kolb using automated head-space equipment to determine distribution coefficients in gas-liquid [77] and gas-solid systems [78], and later by Schoene et al. [79] to determine solubility coefficients in vapours of both solid and liquid polymers. Although these investigations focused on... [Pg.122]


See other pages where Headspace principle is mentioned: [Pg.1165]    [Pg.1165]    [Pg.108]    [Pg.417]    [Pg.418]    [Pg.66]    [Pg.130]    [Pg.190]    [Pg.202]    [Pg.429]    [Pg.372]    [Pg.608]    [Pg.548]    [Pg.40]    [Pg.534]    [Pg.411]    [Pg.103]    [Pg.168]    [Pg.375]    [Pg.252]    [Pg.107]    [Pg.413]    [Pg.2624]    [Pg.1808]    [Pg.1968]    [Pg.1970]    [Pg.1976]    [Pg.207]    [Pg.729]    [Pg.51]    [Pg.54]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Headspace

© 2024 chempedia.info