Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree functional

We have thus arrived at an approximate NOE that coincides with the selfinteraction-corrected Hartree functional proposed by Goedecker and Umrigar except for the choice of phases given by the sign of (Ap. Unfortunately, this NOF gives a wrong description of the ONs for the lowest occupied orbitals. In order to ensure that these ONs only are close to unity, we propose to add a new term to the functional form (94) of matrix A, namely,... [Pg.416]

The Slater wavefunction differs from the Hartree function not only in being composed of spin orbitals rather than just spatial orbitals, but also in the fact that it is not a simple product of one-electron functions, but rather a determinant (Section 4.3.3) whose elements are these functions. To construct a Slater wavefunction (Slater determinant) for a closed-shell species (the only kind we consider in any detail here), we use each of the occupied spatial orbitals to make two spin orbitals, by multiplying the spatial orbital by a and, separately, by jl. The spin orbitals are then filled with the available electrons. An example should make the procedure clear (Fig. 5.2). Suppose we wish to write a Slater determinant for a four-electron... [Pg.182]

Hartree-Fock method (HF). Here the total wave function is assumed to be an antis5nnmetric sum of Hartree functions and can be represented by a Slater determinant... [Pg.99]

The total wavefunction r2,. . ., r is written as a product of single-particle functions (Hartree approximation). The various integrals are evaluated in tire saddle point approximation. A simple Gaussian fomr for tire trial one-particle wavefunction... [Pg.2662]

In this minimal END approximation, the electronic basis functions are centered on the average nuclear positions, which are dynamical variables. In the limit of classical nuclei, these are conventional basis functions used in moleculai electronic structure theoiy, and they follow the dynamically changing nuclear positions. As can be seen from the equations of motion discussed above the evolution of the nuclear positions and momenta is governed by Newton-like equations with Hellman-Feynman forces, while the electronic dynamical variables are complex molecular orbital coefficients that follow equations that look like those of the time-dependent Hartree-Fock (TDHF) approximation [24]. The coupling terms in the dynamical metric are the well-known nonadiabatic terms due to the fact that the basis moves with the dynamically changing nuclear positions. [Pg.228]

Direct dynamics attempts to break this bottleneck in the study of MD, retaining the accuracy of the full electronic PES without the need for an analytic fit of data. The first studies in this field used semiclassical methods with semiempirical [66,67] or simple Hartree-Fock [68] wave functions to heat the electrons. These first studies used what is called BO dynamics, evaluating the PES at each step from the elech onic wave function obtained by solution of the electronic structure problem. An alternative, the Ehrenfest dynamics method, is to propagate the electronic wave function at the same time as the nuclei. Although early direct dynamics studies using this method [69-71] restricted themselves to adiabatic problems, the method can incorporate non-adiabatic effects directly in the electionic wave function. [Pg.255]

To use direct dynamics for the study of non-adiabatic systems it is necessary to be able to efficiently and accurately calculate electronic wave functions for excited states. In recent years, density functional theory (DFT) has been gaining ground over traditional Hartree-Fock based SCF calculations for the treatment of the ground state of large molecules. Recent advances mean that so-called time-dependent DFT methods are now also being applied to excited states. Even so, at present, the best general methods for the treatment of the photochemistry of polyatomic organic molecules are MCSCF methods, of which the CASSCF method is particularly powerful. [Pg.299]

The resulting similarity measures are overlap-like Sa b = J Pxi ) / B(r) Coulomblike, etc. The Carbo similarity coefficient is obtained after geometric-mean normalization Sa,b/ /Sa,a Sb,b (cosine), while the Hodgkin-Richards similarity coefficient uses arithmetic-mean normalization Sa,b/0-5 (Saa+ b b) (Dice). The Cioslowski [18] similarity measure NOEL - Number of Overlapping Electrons (Eq. (10)) - uses reduced first-order density matrices (one-matrices) rather than density functions to characterize A and B. No normalization is necessary, since NOEL has a direct interpretation, at the Hartree-Fodt level of theory. [Pg.308]

Mciny of the theories used in molecular modelling involve multiple integrals. Examples include tire two-electron integrals formd in Hartree-Fock theory, and the integral over the piriitii >ns and momenta used to define the partition function, Q. In fact, most of the multiple integrals that have to be evaluated are double integrals. [Pg.39]

Ihe one-electron orbitals are commonly called basis functions and often correspond to he atomic orbitals. We will label the basis functions with the Greek letters n, v, A and a. n the case of Equation (2.144) there are K basis functions and we should therefore xpect to derive a total of K molecular orbitals (although not all of these will necessarily 3e occupied by electrons). The smallest number of basis functions for a molecular system vill be that which can just accommodate all the electrons in the molecule. More sophisti- ated calculations use more basis functions than a minimal set. At the Hartree-Fock limit he energy of the system can be reduced no further by the addition of any more basis unctions however, it may be possible to lower the energy below the Hartree-Fock limit ay using a functional form of the wavefunction that is more extensive than the single Slater determinant. [Pg.76]

A Hbasis functions provides K molecular orbitals, but lUJiW of these will not be occupied by smy electrons they are the virtual spin orbitals. If u c were to add an electron to one of these virtual orbitals then this should provide a means of calculating the electron affinity of the system. Electron affinities predicted by Konpman s theorem are always positive when Hartree-Fock calculations are used, because fhe irtucil orbitals always have a positive energy. However, it is observed experimentally that many neutral molecules will accept an electron to form a stable anion and so have negative electron affinities. This can be understood if one realises that electron correlation uDiild be expected to add to the error due to the frozen orbital approximation, rather ihan to counteract it as for ionisation potentials. [Pg.95]

Local spin density functional theory (LSDFT) is an extension of regular DFT in the same way that restricted and unrestricted Hartree-Fock extensions were developed to deal with systems containing unpaired electrons. In this theory both the electron density and the spin density are fundamental quantities with the net spin density being the difference between the density of up-spin and down-spin electrons ... [Pg.149]

Several functional forms have been investigated for the basis functions Given the vast experience of using Gaussian functions in Hartree-Fock theory it will come as no surprise to learn that such functions have also been employed in density functional theory. However, these are not the only possibility Slater type orbitals are also used, as are numerical... [Pg.151]

Hybrid Hartree-Fock/Density Functional Methods... [Pg.155]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

Within the periodic Hartree-Fock approach it is possible to incorporate many of the variants that we have discussed, such as LFHF or RHF. Density functional theory can also be used. I his makes it possible to compare the results obtained from these variants. Whilst density functional theory is more widely used for solid-state applications, there are certain types of problem that are currently more amenable to the Hartree-Fock method. Of particular ii. Icvance here are systems containing unpaired electrons, two recent examples being the clci tronic and magnetic properties of nickel oxide and alkaline earth oxides doped with alkali metal ions (Li in CaO) [Dovesi et al. 2000]. [Pg.165]

Drowicz F W and W A Goddard IB 1977. The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree-Fock Wave Functions. In Schaeffer H F III (Editor). Modem Theoretical Chemistry III, New York, Plenum, pp. 79-127. [Pg.180]


See other pages where Hartree functional is mentioned: [Pg.234]    [Pg.221]    [Pg.165]    [Pg.281]    [Pg.16]    [Pg.234]    [Pg.221]    [Pg.165]    [Pg.281]    [Pg.16]    [Pg.33]    [Pg.308]    [Pg.438]    [Pg.438]    [Pg.37]    [Pg.59]    [Pg.81]    [Pg.128]    [Pg.131]    [Pg.133]    [Pg.139]    [Pg.146]    [Pg.152]    [Pg.153]    [Pg.153]    [Pg.154]    [Pg.154]    [Pg.154]    [Pg.155]    [Pg.155]    [Pg.157]    [Pg.157]    [Pg.164]    [Pg.164]    [Pg.164]    [Pg.180]    [Pg.258]    [Pg.631]   
See also in sourсe #XX -- [ Pg.416 ]




SEARCH



© 2024 chempedia.info