Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron availability

When a molecule adsorbs to a surface, it can remain intact or it may dissociate. Dissociative chemisorption is conmion for many types of molecules, particularly if all of the electrons in the molecule are tied up so that there are no electrons available for bonding to the surface without dissociation. Often, a molecule will dissociate upon adsorption, and then recombine and desorb intact when the sample is heated. In this case, dissociative chemisorption can be detected with TPD by employing isotopically labelled molecules. If mixing occurs during the adsorption/desorption sequence, it indicates that the mitial adsorption was dissociative. [Pg.295]

Count the number of valence electrons available For a neutral molecule this is equal to the sum of the valence electrons of the constituent atoms... [Pg.20]

This can be circumvented by choosing alkyl groups with no P H, eg, methyl, neopentyl, trimethylsilylmethyl, phenyl and other aryl groups, and benzyl. The linear transition state for -elimination can also be made stericaHy impossible. The most successful technique for stabilization combines both principles. The pentahaptocyclopentadienyl ring anion (Cp) has six TT-electrons available to share with titanium. Biscyclopentadienyltitanium dichloride... [Pg.154]

The valence theory (4) includes both types of three-center bonds shown as well as normal two-center, B—B and B—H, bonds. For example, one resonance stmcture of pentaborane(9) is given in projection in Figure 6. An octet of electrons about each boron atom is attained only if three-center bonds are used in addition to two-center bonds. In many cases involving boron hydrides the valence stmcture can be deduced. First, the total number of orbitals and valence electrons available for bonding are determined. Next, the B—H and B—H—B bonds are accounted for. Finally, the remaining orbitals and valence electrons are used in framework bonding. Alternative placements of hydrogen atoms require different valence stmctures. [Pg.233]

Table 24.3 lists representative examples of the compounds of these elements in their various oxidation states. The wide range of the oxidation states is particularly noteworthy. It arises from the fact that, in moving across the transition series, the number of d electrons has increased and, in this mid-region, the d orbitals have not yet sunk energetically into the inert electron core. The number of d electrons available for bonding is consequently maximized, and not... [Pg.1044]

In the substituted 2-pyrazoline ring (27) both nitrogen atoms have lone pairs of electrons available those on N-1 are no longer involved in an aromatic system, and in the two cases so far reported the salt... [Pg.17]

Sometimes, as with PCI5 and SF6, it is clear from the formula that the central atom has an expanded octet Often, however, it is by no means obvious that this is the case. At first glance, formulas such as C1F3 or XeF4 look completely straightforward. However, when you try to draw the Lewis structure it becomes clear that an expanded octet is involved. The number of electrons available after the skeleton is drawn is greater than the number required... [Pg.174]

The hole current in this LED is space charge limited and the electron current is contact limited. There are many more holes than electrons in the device and all of the injected electrons recombine in the device. The measured external quantum efficiency of the device is about 0.5% al a current density of 0.1 A/cm. The recombination current calculated from the device model is in reasonable agreement with the observed quantum efficiency. The quantum efficiency of this device is limited by the asymmetric charge injection. Most of the injected holes traverse the structure without recombining because there are few electrons available to form excilons. [Pg.190]

Let s construct the Lewis structure for the simplest organic molecule, the hydrocarbon methane, CH4. First, we count the valence electrons available from all the atoms in the molecule. For methane, the Lewis symbols of the atoms are... [Pg.190]

An additional important factor affecting the bonding of the heavier group 13 elements is the limited number of valence electrons available for bond formation. In neutral molecules the use of the three valence electrons to form three electron pair bonds necessarily leaves a valence orbital unoccupied. This usually results in association or, in cases where one of the bonds involves another group 13 metal, a disproportionation reaction such as that shown in Eq. (1). [Pg.58]

According to this theory, an acid is defined as a proton donor and a base as a proton acceptor (a base must have a pair of electrons available to share with the proton this is usually present as an unshared pair, but sometimes is in a 7t orbital). An acid-base reaction is simply the transfer of a proton from an acid to a base. (Protons do not exist free in solution but must be attached to an electron pair). When the acid gives up a proton, the species remaining still retains the electron pair to which the proton was formerly attached. Thus the new species, in theory at least, can reacquire a proton and is therefore a base. It is referred to as the conjugate base of the acid. All acids have a conjugate base, and all bases have a conjugate acid. All acid-base reactions fit the equation... [Pg.327]

Substrate reduction by vanadium nitrogenase has not been investigated as extensively as has molybdenum nitrogenase, but there are clear differences. Acetylene is a poor substrate and N2 does not compete as effectively with protons for the electrons available during turnover. Therefore, high rates of H2 evolution are observed in the presence of these substrates. Furthermore, acetylene is reduced to both ethylene and a minor product, ethane (172). Equation (2) summarizes the most efficient N2 reduction data yet observed for vanadium nitrogenase. [Pg.207]

Remember from Chapter 6 that energy is released when a bond forms. Consequently, atoms that form covalent bonds tend to use all their valence s and p orbitals to make as many bonds as possible. We might expect the S p -hybridized aluminum atom to form a fourth bond with its unused 3 p orbital. A fourth bond does not form in A1 (C2 115)3 because the carbon atoms bonded to aluminum have neither orbitals nor electrons available for additional bond formation. The potential to form a fourth bond makes triethylaluminum a very reactive molecule. [Pg.671]

For complexation purposes, a ligand is a species that has lone pairs of electrons available to donate to a metal atom or cation. Water molecules possess lone pairs of electrons, so water is a ligand that readily forms complex ions with metal cations. Although solubility and complexation equations show uncomplexed metal ions in solution, dissolved cations actually form chemical bonds to water molecules of the solvent. For example, q) bonds to six water... [Pg.1434]

A Lewis base must have valence electrons available for bond formation. Any molecule whose Lewis stmcture shows nonbonding electrons can act as a Lewis base. Ammonia, phosphorus trichloride, and dimethyl ether, each of which contains lone pairs, are Lewis bases. Anions can also act as Lewis bases. In the first example of adduct formation above, the fluoride ion, with eight valence electrons in its 2 s and 2 p orbitals, acts as a Lewis base. [Pg.1502]

In semiconductors such as silicon, each atom in the structural lattice has four outer electrons, each of which covalently pairs with an electron from one of the four neighboring atoms to form the interatomic bonds, i.e.- the "diamond" structure. Completely pure silicon thus has essentially no electrons available at room temperature for electron conduction, making it a very poor conductor. However, the key is getting the silicon pure enough. Originally, silicon was thought to be a natural semi-conductor until really pure silicon became available. [Pg.310]

Consider now NajW03 or LiTi204. One might expect to find W(V)-W(VI) and Ti(III)-Ti(lV) MMCT. However, in these compounds all metal ions are equivalent and the d electrons available are spread out in a conduction band. The bronzes NajW03 are metallic. They become superconducting at 6K, whereas LiTi204 becomes superconducting at even 13 K [59]. Here we meet the central problem of mixed-valence compounds [60] which we will postpone till Sect. 5. [Pg.166]


See other pages where Electron availability is mentioned: [Pg.148]    [Pg.151]    [Pg.119]    [Pg.88]    [Pg.474]    [Pg.67]    [Pg.231]    [Pg.251]    [Pg.420]    [Pg.3]    [Pg.181]    [Pg.202]    [Pg.223]    [Pg.563]    [Pg.168]    [Pg.168]    [Pg.168]    [Pg.169]    [Pg.169]    [Pg.175]    [Pg.303]    [Pg.383]    [Pg.191]    [Pg.231]    [Pg.236]    [Pg.107]    [Pg.182]    [Pg.194]    [Pg.59]    [Pg.106]    [Pg.23]    [Pg.101]   
See also in sourсe #XX -- [ Pg.164 , Pg.165 , Pg.166 ]




SEARCH



Availability of Electron Acceptors with Higher Reduction Potentials

Availability of electron acceptors

Availability of electron orbitals in metals and metalloids

Available electrones

Available electrones

Available electrons

Available electrons

Available electrons and equivalents

D - electron availability

Electronic prescribing information available

High N Values Without Available Electron-pairs

© 2024 chempedia.info