Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wavefunctions total

Using the orbitals, ct)(r), from a solution of equation Al.3.11, the Hartree many-body wavefunction can be constructed and the total energy detemiined from equation Al.3,3. [Pg.90]

In the Bom-Oppenlieimer approxunation the vibronic wavefrmction is a product of an electronic wavefimction and a vibrational wavefunction, and its syimnetry is the direct product of the synuuetries of the two components. We have just discussed the synuuetries of the electronic states. We now consider the syimnetry of a vibrational state. In the hanuonic approximation vibrations are described as independent motions along nonual modes Q- and the total vibrational wavefrmction is a product of frmctions, one wavefunction for each nonual mode ... [Pg.1137]

The identical colliding particles, each with spin s, are in a resolved state with total spinin the range (0 2s). The spatial wavefiinction with respect to particle interchange satisfies = (—1 Wavefunctions for identical particles with even or odd total spin. S are therefore symmetric (S) or antisynnnetric (A) with respect to particle... [Pg.2037]

Once the requisite one- and two-electron integrals are available in the MO basis, the multiconfigurational wavefunction and energy calculation can begin. Each of these methods has its own approach to describing tlie configurations d),. j included m the calculation and how the C,.] amplitudes and the total energy E are to be... [Pg.2185]

A quantum mechanical treatment of molecular systems usually starts with the Bom-Oppenlieimer approximation, i.e., the separation of the electronic and nuclear degrees of freedom. This is a very good approximation for well separated electronic states. The expectation value of the total energy in this case is a fiinction of the nuclear coordinates and the parameters in the electronic wavefunction, e.g., orbital coefficients. The wavefiinction parameters are most often detennined by tire variation theorem the electronic energy is made stationary (in the most important ground-state case it is minimized) with respect to them. The... [Pg.2331]

The total wavefunction r2,. . ., r is written as a product of single-particle functions (Hartree approximation). The various integrals are evaluated in tire saddle point approximation. A simple Gaussian fomr for tire trial one-particle wavefunction... [Pg.2662]

For separable initial states the single excitation terms can be set to zero at all times at this level of approximation. Eqs. (32),(33),(34) together with the CSP equations and with the ansatz (31) for the total wavefunction are the working equations for the approach. This form, without further extension, is valid only for short time-domains (typically, a few picoseconds at most). For large times, higher correlations, i.e. interactions between different singly and doubly excited states must be included. [Pg.372]

For Iran sition metals th c splittin g of th c d orbitals in a ligand field is most readily done using HHT. In all other sem i-ctn pirical meth -ods, the orbital energies depend on the electron occupation. HyperCh em s m oiccii lar orbital calcii latiori s give orbital cri ergy spacings that differ from simple crystal field theory prediction s. The total molecular wavcfunction is an antisymmetrized product of the occupied molecular orbitals. The virtual set of orbitals arc the residue of SCT calculations, in that they are deemed least suitable to describe the molecular wavefunction, ... [Pg.148]

It was stated above that the Schrodinger equation cannot be solved exactly for any molecular systems. However, it is possible to solve the equation exactly for the simplest molecular species, Hj (and isotopically equivalent species such as ITD" ), when the motion of the electrons is decoupled from the motion of the nuclei in accordance with the Bom-Oppenheimer approximation. The masses of the nuclei are much greater than the masses of the electrons (the resting mass of the lightest nucleus, the proton, is 1836 times heavier than the resting mass of the electron). This means that the electrons can adjust almost instantaneously to any changes in the positions of the nuclei. The electronic wavefunction thus depends only on the positions of the nuclei and not on their momenta. Under the Bom-Oppenheimer approximation the total wavefunction for the molecule can be written in the following form ... [Pg.55]

VV e now wish to establish the general functional form of possible wavefunctions for the two electrons in this pseudo helium atom. We will do so by considering first the spatial part of the u a efunction. We will show how to derive functional forms for the wavefunction in which the i change of electrons is independent of the electron labels and does not affect the electron density. The simplest approach is to assume that each wavefunction for the helium atom is the product of the individual one-electron solutions. As we have just seen, this implies that the total energy is equal to the sum of the one-electron orbital energies, which is not correct as ii ignores electron-electron repulsion. Nevertheless, it is a useful illustrative model. The wavefunction of the lowest energy state then has each of the two electrons in a Is orbital ... [Pg.57]

Ihe one-electron orbitals are commonly called basis functions and often correspond to he atomic orbitals. We will label the basis functions with the Greek letters n, v, A and a. n the case of Equation (2.144) there are K basis functions and we should therefore xpect to derive a total of K molecular orbitals (although not all of these will necessarily 3e occupied by electrons). The smallest number of basis functions for a molecular system vill be that which can just accommodate all the electrons in the molecule. More sophisti- ated calculations use more basis functions than a minimal set. At the Hartree-Fock limit he energy of the system can be reduced no further by the addition of any more basis unctions however, it may be possible to lower the energy below the Hartree-Fock limit ay using a functional form of the wavefunction that is more extensive than the single Slater determinant. [Pg.76]

Tie first consideration is that the total wavefunction and the molecular properties calculated rom it should be the same when a transformed basis set is used. We have already encoun-ered this requirement in our discussion of the transformation of the Roothaan-Hall quations to an orthogonal set. To reiterate suppose a molecular orbital is written as a inear combination of atomic orbitals ... [Pg.108]

Assume that an experiment has been carried out on an atom to measure its total angular momentum L. According to quantum mechanics, only values equal to L(L+1) h will be observed. Further assume, for the particular experimental sample subjected to observation, that values of equal to 2 and 04f were detected in relative amounts of 64 % and 36%, respectively. This means that the atom s original wavefunction / could be represented as ... [Pg.48]

In order to conserve the total energy in molecular dynamics calculations using semi-empirical methods, the gradient needs to be very accurate. Although the gradient is calculated analytically, it is a function of wavefunction, so its accuracy depends on that of the wavefunction. Tests for CH4 show that the convergence limit needs to be at most le-6 for CNDO and INDO and le-7 for MINDO/3, MNDO, AMI, and PM3 for accurate energy conservation. ZINDO/S is not suitable for molecular dynamics calculations. [Pg.123]

In spin relaxation theory (see, e.g., Zweers and Brom[1977]) this quantity is equal to the correlation time of two-level Zeeman system (r,). The states A and E have total spins of protons f and 2, respectively. The diagram of Zeeman splitting of the lowest tunneling AE octet n = 0 is shown in fig. 51. Since the spin wavefunction belongs to the same symmetry group as that of the hindered rotation, the spin and rotational states are fully correlated, and the transitions observed in the NMR spectra Am = + 1 and Am = 2 include, aside from the Zeeman frequencies, sidebands shifted by A. The special technique of dipole-dipole driven low-field NMR in the time and frequency domain [Weitenkamp et al. 1983 Clough et al. 1985] has allowed one to detect these sidebands directly. [Pg.116]

We have extended the linear combination of Gaussian-type orbitals local-density functional approach to calculate the total energies and electronic structures of helical chain polymers[35]. This method was originally developed for molecular systems[36-40], and extended to two-dimensionally periodic sys-tems[41,42] and chain polymers[34j. The one-electron wavefunctions here are constructed from a linear combination of Bloch functions c>>, which are in turn constructed from a linear combination of nuclear-centered Gaussian-type orbitals Xylr) (in ihis case, products of Gaussians and the real solid spherical harmonics). The one-electron density matrix is given by... [Pg.42]

A basis set is the mathematical description of the orbitals within a system (which in turn combine to approximate the total electronic wavefunction) used to perform the theoretical calculation. Larger basis sets more accurately approximate the orbitals by imposing fewer restrictions on the locations of the electrons in space. In the true quantum mechanical picture, electrons have a finite probability of existing anywhere in space this limit corresponds to the infinite basis set expansion in the chart we looked at previously. [Pg.97]

We will find an excitation which goes from a totally symmetric representation into a different one as a shortcut for determining the symmetry of each excited state. For benzene s point group, this totally symmetric representation is Ajg. We ll use the wavefunction coefficients section of the excited state output, along with the listing of the molecular orbitals from the population analysis ... [Pg.226]

If the motions of the electron and of the two nuclei are indeed independent of one another, the total wavefunction should be a product of an electronic one and a nuclear one,... [Pg.73]

The electronic wavefunction is thus given as solution of = ggiAe and the total energy is given by... [Pg.75]

The total wavefunction will depend on the spatial coordinates ri and ra of the two electrons 1 and 2, and also the spatial coordinates Ra and Rb of the two nuclei A and B. I will therefore write the total wavefunction as totfRA. Rb fu fi)-The time-independent Schrodinger equation is... [Pg.86]

We can construct a total electronic wavefunction as the product of a spatial part and a spin part. For the electronic ground state of H2 we can consider combinations of the two spatial terms... [Pg.91]

The total electronic wavefunction is the product of a spatial part and a spin part it is it(r) times a(s) or /3(s) for this one-electron molecule. There are thus two different quantum states having the same spatial part i/r(r). In the absence of a magnetic field, these are degenerate. [Pg.99]

Some authors write x = r s to denote the total variables of the electron, and write the total wavefunction as k(x) or F(r, s). 1 have used a capital here to emphasize that the total wavefunction depends on both the space and spin variables. I will use the symbol dr to denote a differential space element, and ds to denote a differential spin element. [Pg.99]

In order to calculate the total probability (which comes to 1), we have to integrate over both space dr and spin ds. In the case of the hydrogen molecule-ion, we would write LCAO wavefunctions... [Pg.106]


See other pages where Wavefunctions total is mentioned: [Pg.393]    [Pg.393]    [Pg.32]    [Pg.88]    [Pg.92]    [Pg.172]    [Pg.1136]    [Pg.1137]    [Pg.1138]    [Pg.2048]    [Pg.2300]    [Pg.370]    [Pg.375]    [Pg.387]    [Pg.388]    [Pg.57]    [Pg.62]    [Pg.129]    [Pg.132]    [Pg.146]    [Pg.174]    [Pg.623]    [Pg.91]    [Pg.95]    [Pg.105]   
See also in sourсe #XX -- [ Pg.755 ]




SEARCH



Dissociation wavefunction total

Radial functions and total wavefunctions of the hydrogen atom

Theoretical background A representation of the total wavefunctions

Total angular momentum wavefunction

Total-energy wavefunction

Wavefunction total electron

© 2024 chempedia.info