Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Total wave function

The radial factor in the total wave function must therefore be an eigenstate of... [Pg.21]

Considering the semiclassical Hamiltonian from Eq. (28), one can expand the total wave function as. [Pg.59]

In this seiniclassical calculation, we use only one wavepacket (the classical path limit), that is, a Gaussian wavepacket, rather than the general expansion of the total wave function. Equation (39) then takes the following form ... [Pg.60]

The ordinary BO approximate equations failed to predict the proper symmetry allowed transitions in the quasi-JT model whereas the extended BO equation either by including a vector potential in the system Hamiltonian or by multiplying a phase factor onto the basis set can reproduce the so-called exact results obtained by the two-surface diabatic calculation. Thus, the calculated hansition probabilities in the quasi-JT model using the extended BO equations clearly demonshate the GP effect. The multiplication of a phase factor with the adiabatic nuclear wave function is an approximate treatment when the position of the conical intersection does not coincide with the origin of the coordinate axis, as shown by the results of [60]. Moreover, even if the total energy of the system is far below the conical intersection point, transition probabilities in the JT model clearly indicate the importance of the extended BO equation and its necessity. [Pg.80]

The connection holds separately for the coefficient of each state component in the wave function and is not a property of the total wave function (as is, e.g., the dynamical phase [9]). [Pg.128]

The total orbital wave function for this system is given by an electronically adiabatic n-state Bom-Huang expansion [2,3] in terms of this electronic basis set as... [Pg.185]

In the two-adiabatic-electronic-state Bom-Huang description of the total orbital wave function, we wish to solve the corresponding nuclear motion Schrodinger equation in the diabatic representation... [Pg.208]

The total molecular system wave function is subject to the boundaty conditions... [Pg.224]

When constructing more general molecular wave functions there are several concepts that need to be defined. The concept of geometry is inhoduced to mean a (time-dependent) point in the generalized phase space for the total number of centers used to describe the END wave function. The notations R and P are used for the position and conjugate momenta vectors, such that... [Pg.230]

Although the leading term of the electronic wave function of the system is thus changed, the total wave function has not and the calculated trajectory and properties exhibit no discontinuous behavior. [Pg.233]

The separation of nuclear and electronic motion may be accomplished by expanding the total wave function in functions of the election coordinates, r, parametrically dependent on the nuclear coordinates... [Pg.312]

If the reaction is elementary, there is only a single transition state between A and B. At this point the derivative of the total electronic wave function with respect to the reaction coordinate Qa b vanishes ... [Pg.331]

A more general classification considers the phase of the total electronic wave function [13]. We have treated the case of cyclic polyenes in detail [28,48,49] and showed that for Hiickel systems the ground state may be considered as the combination of two Kekule structures. If the number of electron pairs in the system is odd, the ground state is the in-phase combination, and the system is aromatic. If the number of electron pairs is even (as in cyclobutadiene, pentalene, etc.), the ground state is the out-of-phase combination, and the system is antiaromatic. These ideas are in line with previous work on specific systems [40,50]. [Pg.342]

Adopting the view that any theory of aromaticity is also a theory of pericyclic reactions [19], we are now in a position to discuss pericyclic reactions in terms of phase change. Two reaction types are distinguished those that preserve the phase of the total electi onic wave-function - these are phase preserving reactions (p-type), and those in which the phase is inverted - these are phase inverting reactions (i-type). The fomier have an aromatic transition state, and the latter an antiaromatic one. The results of [28] may be applied to these systems. In distinction with the cyclic polyenes, the two basis wave functions need not be equivalent. The wave function of the reactants R) and the products P), respectively, can be used. The electronic wave function of the transition state may be represented by a linear combination of the electronic wave functions of the reactant and the product. Of the two possible combinations, the in-phase one [Eq. (11)] is phase preserving (p-type), while the out-of-phase one [Eq. (12)], is i-type (phase inverting), compare Eqs. (6) and (7). Normalization constants are assumed in both equations ... [Pg.343]

The phase-change nale, also known as the Ben phase [101], the geometric phase effect [102,103] or the molecular Aharonov-Bohm effect [104-106], was used by several authors to verify that two near-by surfaces actually cross, and are not repelled apart. This point is of particular relevance for states of the same symmetry. The total electronic wave function and the total nuclear wave function of both the upper and the lower states change their phases upon being bansported in a closed loop around a point of conical intersection. Any one of them may be used in the search for degeneracies. [Pg.382]

IT. Total Molecular Wave Functdon TIT. Group Theoretical Considerations TV. Permutational Symmetry of Total Wave Function V. Permutational Symmetry of Nuclear Spin Function VT. Permutational Symmetry of Electronic Wave Function VIT. Permutational Symmetry of Rovibronic and Vibronic Wave Functions VIIT. Permutational Symmetry of Rotational Wave Function IX. Permutational Symmetry of Vibrational Wave Function X. Case Studies Lis and Other Systems... [Pg.551]

Symmetry considerations have long been known to be of fundamental importance for an understanding of molecular spectra, and generally molecular dynamics [28-30]. Since electrons and nuclei have distinct statistical properties, the total molecular wave function must satisfy appropriate symmehy... [Pg.552]

In the strictest meaning, the total wave function cannot be separated since there are many kinds of interactions between the nuclear and electronic degrees of freedom (see later). However, for practical purposes, one can separate the total wave function partially or completely, depending on considerations relative to the magnitude of the various interactions. Owing to the uniformity and isotropy of space, the translational and rotational degrees of freedom of an isolated molecule can be described by cyclic coordinates, and can in principle be separated. Note that the separation of the rotational degrees of freedom is not trivial [37]. [Pg.553]

As is well known, when the electronic spin-orbit interaction is small, the total electronic wave function v / (r, s R) can be written as the product of a spatial wave function R) and a spin function t / (s). For this, we can use either... [Pg.560]


See other pages where Total wave function is mentioned: [Pg.3]    [Pg.9]    [Pg.20]    [Pg.24]    [Pg.27]    [Pg.32]    [Pg.40]    [Pg.41]    [Pg.106]    [Pg.130]    [Pg.130]    [Pg.181]    [Pg.188]    [Pg.209]    [Pg.214]    [Pg.224]    [Pg.328]    [Pg.329]    [Pg.332]    [Pg.335]    [Pg.341]    [Pg.344]    [Pg.357]    [Pg.365]    [Pg.442]    [Pg.514]    [Pg.553]    [Pg.553]    [Pg.554]    [Pg.556]    [Pg.559]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Geometric phase effect total molecular wave function

Irreducible representations total molecular wave function

Nuclear dynamics total molecular wave function

Permutational symmetry, total molecular wave function

Polyatomic systems total wave function

Schrodinger equation for the total wave function

Schrodinger equation total wave function

Symmetric properties total molecular wave function

Total molecular wave function

Total molecular wave function, permutational

Wave function, electronic total

© 2024 chempedia.info