Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transport

All major functions of a plant, such as glass transport, control of the sputter processes and pump control, are carried out fully automatically. This is the only way to ensure high productivity along w/ith high product quality. [Pg.137]

Of course, in order to vary the mass transport of the reactant to the electrode surface, the radius of the electrode must be varied, and this unplies the need for microelectrodes of different sizes. Spherical electrodes are difficult to constnict, and therefore other geometries are ohen employed. Microdiscs are conunonly used in the laboratory, as diey are easily constnicted by sealing very fine wires into glass epoxy resins, cutting... [Pg.1939]

Trapped gas in closed pores often limits densification when sintering witlr a liquid or viscous (glass) phase because rapid material transport tlirough tlie liquid often results in pore closure early in tlie sintering process. [Pg.2772]

Faraday s law (p. 496) galvanostat (p. 464) glass electrode (p. 477) hanging mercury drop electrode (p. 509) hydrodynamic voltammetry (p. 513) indicator electrode (p. 462) ionophore (p. 482) ion-selective electrode (p. 475) liquid-based ion-selective electrode (p. 482) liquid junction potential (p. 470) mass transport (p. 511) mediator (p. 500) membrane potential (p. 475) migration (p. 512) nonfaradaic current (p. 512)... [Pg.532]

The aim of breaking up a thin film of liquid into an aerosol by a cross flow of gas has been developed with frits, which are essentially a means of supporting a film of liquid on a porous surface. As the liquid flows onto one surface of the frit (frequently made from glass), argon gas is forced through from the undersurface (Figure 19.16). Where the gas meets the liquid film, the latter is dispersed into an aerosol and is carried as usual toward the plasma flame. There have been several designs of frit nebulizers, but all work in a similar fashion. Mean droplet diameters are approximately 100 nm, and over 90% of the liquid sample can be transported to the flame. [Pg.146]

R. W. Wright, "High Strength Glass in Service—A Status Report," presented at The Conference on Aerospace Transport Materials and Enclosures, Tech. Report AFML-TR-76-54, Atianta, Ga., 1975. [Pg.529]

Liquids. Liquids usually are moved through pipelines (qv) by pumps. Special alloys, plastic pipe and liners, glass, and ceramics are widely employed in the chemical industry for transport of corrosive hquids. Care is required in making the connections, to prevent exposure of unprotected metal such as flanges and bolts to the corrosive material inside the piping. [Pg.99]

Proprietary blend formulations based on polysulfone, polyethersulfone, and polyphenylsulfone are sold commercially by Amoco Corporation to meet various end use requirements. The blends based on polysulfone are sold under the MINDEL trademark. A glass fiber-reinforced blend based on PES is offered under the trade name RADEL AG-360. This offers most of the performance characteristics of 30% glass fiber-reinforced polyethersulfone but at a lower cost. Two blend product lines are offered based on PPSF. These are designated as the RADEL R-4000 and R-7000 series of products. The former is a lower cost alternative to RADEL R PPSF homopolymer offering most of the performance attributes unique to PPSF. The R-7000 series of resins have been formulated for use in aircraft interiors for civil air transport. They exhibit a very high degree of resistance to flammabihty and smoke release. [Pg.469]

RCF is sold in a variety of forms, such as loose fiber, blanket, boards, modules, cloth, cements, putties, paper, coatings, felt, vacuum-formed shapes, rope, braid, tape, and textiles. The products are principally used for industrial appHcations as insulation in furnaces, heaters, kiln linings, furnace doors, metal launders, tank car insulation, and other uses up to 1400°C. RCF-consuming industries include ferrous and nonferrous metals, petrochemical, ceramic, glass, chemical, fertiH2er, transportation, constmction, and power generation/incineration. Some newer uses include commercial fire protection and appHcations in aerospace, eg, heat shields and automotive, eg, catalytic converters, metal reinforcement, heat shields, brake pads, and airbags. [Pg.56]

AH forms and compositions of reinforcements, ie, mats, woven roving, glass, carbon, and aramid, are commonly used with these processes. Special continuous glass strand mats with a thermoplastic binder aHow preforms to be made using thermoforming techniques. These processes are used for tmck and autobody components, medical equipment cabinets, transportation seating, and other parts needed in the intermediate volume range (1,000—10,000 parts/yr). [Pg.95]

Phonon transport is the main conduction mechanism below 300°C. Compositional effects are significant because the mean free phonon path is limited by the random glass stmcture. Estimates of the mean free phonon path in vitreous siUca, made using elastic wave velocity, heat capacity, and thermal conductivity data, generate a value of 520 pm, which is on the order of the dimensions of the SiO tetrahedron (151). Radiative conduction mechanisms can be significant at higher temperatures. [Pg.506]


See other pages where Glass transport is mentioned: [Pg.365]    [Pg.517]    [Pg.519]    [Pg.521]    [Pg.523]    [Pg.525]    [Pg.527]    [Pg.529]    [Pg.292]    [Pg.365]    [Pg.517]    [Pg.519]    [Pg.521]    [Pg.523]    [Pg.525]    [Pg.527]    [Pg.529]    [Pg.292]    [Pg.126]    [Pg.477]    [Pg.240]    [Pg.243]    [Pg.96]    [Pg.562]    [Pg.579]    [Pg.300]    [Pg.310]    [Pg.313]    [Pg.316]    [Pg.331]    [Pg.431]    [Pg.526]    [Pg.82]    [Pg.353]    [Pg.413]    [Pg.46]    [Pg.172]    [Pg.391]    [Pg.512]    [Pg.517]    [Pg.368]    [Pg.4]    [Pg.46]    [Pg.311]    [Pg.544]    [Pg.565]    [Pg.570]    [Pg.215]    [Pg.518]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



A microscopic approach to ionic transport in glasses

Alq3 charge transport of molecular glasses, electron

Arylamines charge transport of molecular glasses, hole

Charge transport, molecular glasses

Electrical transport, glasses

Electron injection charge transport of molecular glasses

Glass heat transport properties

Glass mass transport properties

Glass transition temperature charge transport

Glass-forming liquids transport properties

Hole injection charge transport of molecular glasses

Oxadiazoles charge transport of molecular glasses, electron

Starburst molecules charge transport of molecular glasses, hole

TPD complexes charge transport of molecular glasses, hole

Transport in glass

© 2024 chempedia.info