Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional groups systems

The Wiswesser Line Notation (WLN) was introduced in 1946, in order to organize and to systematically describe the cornucopia of compounds in a more concise manner. A line notation represents a chemical structure by an alphanumeric sequence, which significantly simplifies the processing by the computer [9-11], (n many cases the WLN uses the standard symbols for the chemical elements. Additionally, functional groups, ring systems, positions of ring substituents, and posi-... [Pg.23]

Once we have the measures, we have to apply them to chemical objects. Objects of interest to a chemist include molecules, reactions, mbrtures, spectra, patents, journal articles, atoms, functional groups, and complex chemical systems. Most frequently, the objects studied for similarity/dissimilarity are molecular structures. [Pg.309]

In Eq. (16 i denotes an atom up to lour non-rotatable bonds away from the proton and is the total number of those atoms. A bond is deRned as non-rotatable if it belongs to a ring, to a. T-system, or to an amide functional group q- is the partial atomic charge of the atom i, and is the 3D distance between the proton j and the atom i. Figure 10.2-5 shows an example of a proton RDF descriptor. [Pg.525]

This reference work differs from Beilstein in that it is baaed upon structural formulae and compounds are grouped according to the carbon skeleton rather than the functional group the latter system has the advantage that closely related compounds are grouped together. The volumes are not published in numerical order but rather on the basis of fields of current interest. They are a valuable supplement to Beilstein. The volumes which have been published to date (1955) are ... [Pg.1129]

CHEOPS (we tested Version 3.0.1) is a program for predicting polymer properties. It consists of two programs The analysis program allows the user to draw the repeat unit structure and will then compute a whole list of properties the synthesis program allows the user to specify a class of polymers and desired properties and will then try the various permutations of the functional groups to find ones that fit the requirements. On a Pentium Pro 200 system, the analysis computations were essentially instantaneous and the synthesis computations could take up to a few minutes. There was no automated way to transfer information between the two programs. [Pg.353]

The reaction conditions applied are usually heating the amine with a slight excess of aldehyde and a considerable.excess of 2d-30hydrochloric acid at 100 °C for a few hours, but much milder ( physiological ) conditions can be used with good success. Diols, olefinic double bonds, enol ethers, and glycosidic bonds survive a Pictet-Spengler reaction very well, since phenol and indole systems are much more reactive than any of these acid sensitive functional groups (W.M. Whaley, 1951 J.E.D. Barton, 1965 A.R. Battersby, 1969). [Pg.292]

Appreciable interaction between chromophores does not occur unless they are linked directly to each other, or forced into close proximity as a result of molecular stereochemical configuration. Interposition of a single methylene group, or meta orientation about an aromatic ring, is sufficient to insulate chromophores almost completely from each other. Certain combinations of functional groups afford chromophoric systems which give rise to characteristic absorption bands. [Pg.707]

The common method of naming aldehydes corresponds very closely to that of the related acids (see Carboxylic acids), in that the term aldehyde is added to the base name of the acid. For example, formaldehyde (qv) comes from formic acid, acetaldehyde (qv) from acetic acid, and butyraldehyde (qv) from butyric acid. If the compound contains more than two aldehyde groups, or is cycHc, the name is formed using carbaldehyde to indicate the functionaUty. The lUPAC system of aldehyde nomenclature drops the final e from the name of the parent acycHc hydrocarbon and adds al If two aldehyde functional groups are present, the suffix -dialis used. The prefix formjlis used with polyfunctional compounds. Examples of nomenclature types are shown in Table 1. [Pg.469]

In some systems, such as lake and river waters, the suspended inorganic particles may be coated by biological polymers, termed humic substances, which prevent flocculation by either steric or electrostatic mechanisms. These can also interact with added inorganic salts (31) that can neutralize charged functional groups on these polymers. [Pg.33]

AH corrosion inhibitors in use as of this writing are oil-soluble surfactants (qv) which consist of a hydrophobic hydrocarbon backbone and a hydrophilic functional group. Oil-soluble surfactant-type additives were first used in 1946 by the Sinclair Oil Co. (38). Most corrosion inhibitors are carboxyhc acids (qv), amines, or amine salts (39), depending on the types of water bottoms encountered in the whole distribution system. The wrong choice of inhibitors can lead to unwanted reactions. Eor instance, use of an acidic corrosion inhibitor when the water bottoms are caustic can result in the formation of insoluble salts that can plug filters in the distribution system or in customers vehicles. Because these additives form a strongly adsorbed impervious film at the metal Hquid interface, low Hquid concentrations are usually adequate. Concentrations typically range up to 5 ppm. In many situations, pipeline companies add their own corrosion inhibitors on top of that added by refiners. [Pg.186]

Formation and Elimination of Multiple Bond Functionalities. Reactions that involve the formation and elimination of multiple bond functional groups may significantly effect the color of residual lignin in bleached and unbleached pulps. The ethylenic and carbonyl groups conjugated with phenoHc or quinoid stmctures are possible components of chromophore or leucochromophore systems that contribute to the color of lignin. [Pg.139]

The two most useful supplementary techniques for the light microscope are EDS and FTIR microscopy. Energy dispersed x-ray systems (EDS) and Eourier-transform infrared absorption (ETIR) are used by chemical microscopists for elemental analyses (EDS) of inorganic compounds and for organic function group analyses (ETIR) of organic compounds. Insofar as they are able to characterize a tiny sample microscopically by PLM, EDS and ETIR ensure rapid and dependable identification when appHed by a trained chemical microscopist. [Pg.334]


See other pages where Functional groups systems is mentioned: [Pg.60]    [Pg.69]    [Pg.70]    [Pg.387]    [Pg.60]    [Pg.60]    [Pg.69]    [Pg.70]    [Pg.387]    [Pg.60]    [Pg.321]    [Pg.539]    [Pg.192]    [Pg.294]    [Pg.349]    [Pg.516]    [Pg.576]    [Pg.661]    [Pg.283]    [Pg.349]    [Pg.34]    [Pg.287]    [Pg.346]    [Pg.3]    [Pg.63]    [Pg.133]    [Pg.133]    [Pg.207]    [Pg.209]    [Pg.251]    [Pg.328]    [Pg.361]    [Pg.313]    [Pg.64]    [Pg.125]    [Pg.374]    [Pg.378]    [Pg.378]    [Pg.387]    [Pg.387]    [Pg.388]    [Pg.485]    [Pg.118]   
See also in sourсe #XX -- [ Pg.211 , Pg.212 ]




SEARCH



Functional group-tolerant ruthenium systems

Functional systems

Group 13 systems

Systems functional group compatibility with

© 2024 chempedia.info