Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional derivatives physical properties

High correlations between two properties indicate the possibility of replacing one with a function of the other. This would enable us to reduce the dimensionality of a design space. One study (Joback, 1984) found that nine physical properties were well approximated by three new properties called factors. Table XVI shows several of the derived physical property estimation techniques, using essentially two of these factors, F, and F. Group contribution estimation techniques were developed for both factors, f, and Fy... [Pg.294]

The physical properties of lipids derive directly from their chemical structures and functional groups. Physical properties greatly influence the functions of lipids in foods and the methods required for manipulation and processing. They can also be used to assess the purity or quality of lipid material in reference to known standards or preferred characteristics. [Pg.61]

In the case that AE waves are formulated by Eq. 7.23, the moment tensor components are just the coefficient represent of the spatial derivatives of Green s function. Therefore, physical property of the moment tensor is derived inherently from Green s functions. Consider the spatial derivative of Green s function, Guj. From the definition, the differential expression is given as,... [Pg.167]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

Selected physical properties of various methacrylate esters, amides, and derivatives are given in Tables 1—4. Tables 3 and 4 describe more commercially available methacrylic acid derivatives. A2eotrope data for MMA are shown in Table 5 (8). The solubiUty of MMA in water at 25°C is 1.5%. Water solubiUty of longer alkyl methacrylates ranges from slight to insoluble. Some functionalized esters such as 2-dimethylaniinoethyl methacrylate are miscible and/or hydrolyze. The solubiUty of 2-hydroxypropyl methacrylate in water at 25°C is 13%. Vapor—Hquid equiUbrium (VLE) data have been pubHshed on methanol, methyl methacrylate, and methacrylic acid pairs (9), as have solubiUty data for this ternary system (10). VLE data are also available for methyl methacrylate, methacrylic acid, methyl a-hydroxyisobutyrate, methanol, and water, which are the critical components obtained in the commercially important acetone cyanohydrin route to methyl methacrylate (11). [Pg.242]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

Group Contribution Methods. It has been shown that many macroscopic physical properties, ie, those derived from experimental measurements of bulk solutions or substances, can be related to specific constituents of individual molecules. These constituents, or functional groups, are usually composed of commonly found combinations of atoms. One procedure for correlating functional groups to a property is as foUows. (/) A set of... [Pg.248]

Since every atom extends to an unlimited distance, it is evident that no single characteristic size can be assigned to it. Instead, the apparent atomic radius will depend upon the physical property concerned, and will differ for different properties. In this paper we shall derive a set of ionic radii for use in crystals composed of ions which exert only a small deforming force on each other. The application of these radii in the interpretation of the observed crystal structures will be shown, and an at- Fig. 1.—The eigenfunction J mo, the electron den-tempt made to account for sity p = 100, and the electron distribution function the formation and stability D = for the lowest state of the hydr°sen of the various structures. [Pg.258]

The physical properties of the expanded radialenes were greatly enhanced upon donor functionalization, leading to the stable derivatives 76-78 with fully planar conjugated rr-chromophores [110]. These compounds exhibit large third-order nonlinear optical coefficients, can be reversibly reduced or oxidized, and... [Pg.63]

In order that the eigenfunctions tp, have physical significance in their application to quantum theory, they are chosen from a special class of functions, namely, those which are continuous, have continuous derivatives, are single-valued, and are square integrable. We refer to functions with these properties as well-behaved functions. Throughout this book we implicitly assume that all functions are well-behaved. [Pg.68]

A lead is variously defined in the pharmaceutical industry as a compound derived from a hit with some degree of in vitro optimization (potency in primary assay, activity in functional and/or cellular assay), optimization of physical properties (solubility, permeability), and optimization of in vitro ADME properties (microsomal stability, CYP inhibition). Moreover, a lead must have established SAR/SPR around these parameters such that continued optimization appears possible. A lead may also have preliminary PK and in vivo animal model data. However, it is the task of the lead optimization chemist to improve PK and in vivo activity to the levels needed for identification of a clinical candidate. [Pg.178]

Recently, the hydroxy derivatives of furan, thiophene, and selenophene have been studied with regard to their physical properties and reactions. These compounds are tautomeric and if the oxygen function is placed in the 2-position they exist as unsaturated lactones and undergo carbon-carbon rearrangement, whereas the 3-hydroxy derivatives form oxo-enol tautomeric systems. By NMR the structures of the different tautomeric forms have been determined as well as the position of the tautomeric equilibrium and the rate of isomerization. [Pg.155]

Conditions imposed on a process (or a set of equations for that matter) may cause the unit physical states to move from a two-phase to a single-phase operation, or the reverse. As the code shifts from one module to another to represent the process properly, a severe discontinuity occurs in the objective function surface (and perhaps a constraint surface). Derivatives or their substitutes may not change smoothly, and physical property values may jump about. [Pg.538]

The physical properties of atoms and molecules embedded in polar liquids have usually been described in the frame of the effective medium approximation. Within this model, the solute-solvent interactions are accounted for by means of the RF theory [1-3], The basic quantity of this formalism is the RF potential. It is usually variationally derived from a model energy functional describing the effective energy of the solute in the field of an external electrostatic perturbation. For instance, if a singly negative or positive charged atomic system is considered, the RF potential is simply given by... [Pg.82]

Porphyrazines (pz), or tetraazaporphyrins, are compounds that can be viewed as porphyrin variants in which the meso carbon atoms are replaced with nitrogen atoms, as Fig. 1 shows (1). This difference intrinsically gives porphyrazines discrete physiochemical properties from the porphyrins. In addition, despite their similar molecular architecture, porphyrazines are prepared by an entirely different synthetic route than porphyrins—by template cyclization of maleonitrile derivatives, as in Fig. 2, where the open circle with the A in it represents the peripheral substituent of the pz—rather than by the condensation of pyrrole and aldehyde derivatives (1). The pz synthetic route allows for the preparation of macrocycles with chemical and physical properties not readily accessible to porphyrins. In particular, procedures have been developed for the synthesis of porphyrazines with S, N, or O heteroatom peripheral functionalization of the macrocycle core (2-11). It is difficult to impossible to attach the equivalent heteroatoms to the periphery of porphyrins (12). In addition, the preparation and purification of porphyrazines that bear two different kinds of substituents is readily achievable through the directed cocyclization of two different dinitriles, Fig. 3 (4, 5, 13). [Pg.475]


See other pages where Functional derivatives physical properties is mentioned: [Pg.229]    [Pg.385]    [Pg.56]    [Pg.193]    [Pg.176]    [Pg.390]    [Pg.61]    [Pg.211]    [Pg.208]    [Pg.321]    [Pg.487]    [Pg.489]    [Pg.248]    [Pg.337]    [Pg.195]    [Pg.40]    [Pg.45]    [Pg.422]    [Pg.6]    [Pg.112]    [Pg.88]    [Pg.952]    [Pg.38]    [Pg.114]    [Pg.145]    [Pg.1230]    [Pg.602]    [Pg.4]    [Pg.268]    [Pg.109]    [Pg.203]    [Pg.157]   
See also in sourсe #XX -- [ Pg.659 ]

See also in sourсe #XX -- [ Pg.659 ]




SEARCH



Derivative function

Derivative properties

Function derived

Functional physical

Functional properties

© 2024 chempedia.info