Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel rods, nuclear reactor

Tong, L. S., 1967b, Heat Transfer in Water-Cooled Nuclear Reactors, Nuclear Eng. Design (5 301. (3) Tong, L. S., 1968a, An Evaluation of the Departure from Nucleate Boiling in Bundles of Reactor Fuel Rods, Nuclear Sci. Eng. 33 7-15. (5)... [Pg.555]

Uranium dioxide occcurs in nature as mineral uraninite. It is used in nuclear fuel rods for reactors. Also it is used in large incandescent lamps for photography or motion pictures and is connected to the tungsten filaments to prevent sudden surges of current. [Pg.959]

L. S. Tong, An Evaluation of the Departure From Nucleate Boiling in Bundles of Reactor Fuel Rods, Nuclear Sci. Eng. (33) 7-15,1968. [Pg.1155]

Nuclear Radiation Effects. Components of a nuclear reactor system that require lubrication include control-rod drives, coolant circulating pumps or compressors, motor-operated valves, and fuel handling devices, and, of course, are exposed to varying amounts of ionising (14). [Pg.253]

Niobium is also important in nonferrous metallurgy. Addition of niobium to tirconium reduces the corrosion resistance somewhat but increases the mechanical strength. Because niobium has a low thermal-neutron cross section, it can be alloyed with tirconium for use in the cladding of nuclear fuel rods. A Zr—l%Nb [11107-78-1] alloy has been used as primary cladding in the countries of the former USSR and in Canada. A Zr—2.5 wt % Nb alloy has been used to replace Zircaloy-2 as the cladding in Candu-PHW (pressurized hot water) reactors and has resulted in a 20% reduction in wall thickness of cladding (63) (see Nuclear reactors). [Pg.26]

Uranium oxide [1344-57-6] from mills is converted into uranium hexafluoride [7783-81-5] FJF, for use in gaseous diffusion isotope separation plants (see Diffusion separation methods). The wastes from these operations are only slightly radioactive. Both uranium-235 and uranium-238 have long half-Hves, 7.08 x 10 and 4.46 x 10 yr, respectively. Uranium enriched to around 3 wt % is shipped to a reactor fuel fabrication plant (see Nuclear REACTORS, NUCLEAR FUEL reserves). There conversion to uranium dioxide is foUowed by peUet formation, sintering, and placement in tubes to form fuel rods. The rods are put in bundles to form fuel assembHes. Despite active recycling (qv), some low activity wastes are produced. [Pg.228]

Water as coolant in a nuclear reactor is rendered radioactive by neutron irradiation of corrosion products of materials used in reactor constmction. Key nucHdes and the half-Hves in addition to cobalt-60 are nickel-63 [13981 -37-8] (100 yr), niobium-94 [14681-63-1] (2.4 x 10 yr), and nickel-59 [14336-70-0] (7.6 x lO" yr). Occasionally small leaks in fuel rods allow fission products to enter the cooling water. Cleanup of the water results in LLW. Another source of waste is the residue from appHcations of radionucHdes in medical diagnosis, treatment, research, and industry. Many of these radionucHdes are produced in nuclear reactors, especially in Canada. [Pg.228]

Spent Fuel Treatment. Spent fuel assembhes from nuclear power reactors are highly radioactive because they contain fission products. Relatively few options are available for the treatment of spent fuel. The tubes and the fuel matrix provide considerable containment against attack and release of nucHdes. To minimi2e the volume of spent fuel that must be shipped or disposed of, consoHdation of rods in assembhes into compact bundles of fuel rods has been successfully tested. Alternatively, intact assembhes can be encased in metal containers. [Pg.229]

During the operation of nuclear power reactors, which are fuelled with ceramic UO2 fuel rods, the fission of the nuclei leads to die formation of fission products which are isotopes of elements in all of tire Groups of the Periodic Table. The major fission products, present in 1-10% abundance, fall into five groups divided according to the chemical interaction of each product with the fuel ... [Pg.249]

Carbide-based cermets have particles of carbides of tungsten, chromium, and titanium. Tungsten carbide in a cobalt matrix is used in machine parts requiring very high hardness such as wire-drawing dies, valves, etc. Chromium carbide in a cobalt matrix has high corrosion and abrasion resistance it also has a coefficient of thermal expansion close to that of steel, so is well-suited for use in valves. Titanium carbide in either a nickel or a cobalt matrix is often used in high-temperature applications such as turbine parts. Cermets are also used as nuclear reactor fuel elements and control rods. Fuel elements can be uranium oxide particles in stainless steel ceramic, whereas boron carbide in stainless steel is used for control rods. [Pg.10]

The energy produced in a nuclear reactor vessel is the result of a nuclear fission (atom splitting) process that occurs when sufficient nuclear material is brought together (critical mass). Under these circumstances, a chain reaction occurs and an external supply of neutrons is not required. A nuclear fuel control rod system raises or lowers the nuclear fuel (which is contained within fuel rods) inside the reactor vessel. [Pg.65]

If the rate of the chain reaction exceeds a certain level, the reactor will become too hot and begin to melt. Control rods—rods made from neutron-absorbing elements, such as boron or cadmium, and inserted between the fuel rods—help to control the number of available neutrons and the rate of nuclear reaction. [Pg.839]

The protection of components against nuclear radiation is a critical factor in the design of nuclear-fission components.P CVD is used extensively in this area, particularly in the coating of nuclear fuel particles such as fissile U-235, U-233, and fertile Th-232 with pyrolytic carbon. The carbon is deposited in a fluidized-bed reactor (see Ch. 4). The coated particles are then processed into fuel rods which are assembled to form the fuel elements. [Pg.446]

The turbine and generator components of a nuclear power plant have exact counterparts in power plants fueled by fossil fuels. The uniqueness of the nuclear power plant lies in its core. The core is a nuclear reactor where fission takes place under conditions that keep the reactor operating just below the critical level. The core contains three parts fuel rods, moderators, and control rods. These components act on the flow of neutrons within the core, as shown in Figure 22-13. The fate of neutrons must be controlled carefully. Fission must be sustained at a steady rate that produces sufficient energy to mn a generator, but the rate must not be allowed to increase and destroy the reactor. [Pg.1585]

The ratio of plutonium isotopes to 241 Am is often reported in monitoring studies as it is an important tool in dose assessment by enabling a determination of plutonium concentrations. 243Am is produced directly by the capture of two neutrons by 241 Am. The parent of241 Am is 241Pu, which constitutes about 12% of the 1% content of a typical spent fuel rod from a nuclear reactor, has a half-life of 14 years. Separation of... [Pg.133]

Nuclear and magneto-hydrodynamic electric power generation systems have been produced on a scale which could lead to industrial production, but to-date technical problems, mainly connected with corrosion of the containing materials, has hampered full-scale development. In the case of nuclear power, the proposed fast reactor, which uses fast neutron fission in a small nuclear fuel element, by comparison with fuel rods in thermal neutron reactors, requires a more rapid heat removal than is possible by water cooling, and a liquid sodium-potassium alloy has been used in the development of a near-industrial generator. The fuel container is a vanadium sheath with a niobium outer cladding, since this has a low fast neutron capture cross-section and a low rate of corrosion by the liquid metal coolant. The liquid metal coolant is transported from the fuel to the turbine generating the electric power in stainless steel... [Pg.300]

Reactor fuel consists of uranium that has been formed into a usable metal alloy and provided as small pellets, rods, or plates. The fuel is encapsulated with a metal cladding, such as zircaloy, which adds mechanical strength and also prevents radioactive contamination. Nuclear reactor waste or spent nuclear fuel consists of the fuel pellets that have been used... [Pg.215]


See other pages where Fuel rods, nuclear reactor is mentioned: [Pg.847]    [Pg.259]    [Pg.509]    [Pg.198]    [Pg.235]    [Pg.236]    [Pg.10]    [Pg.101]    [Pg.266]    [Pg.300]    [Pg.205]    [Pg.206]    [Pg.956]    [Pg.879]    [Pg.1187]    [Pg.525]    [Pg.444]    [Pg.839]    [Pg.529]    [Pg.135]    [Pg.306]    [Pg.313]    [Pg.325]    [Pg.429]    [Pg.552]    [Pg.1681]    [Pg.1754]    [Pg.101]    [Pg.266]    [Pg.110]    [Pg.215]   
See also in sourсe #XX -- [ Pg.880 , Pg.881 ]




SEARCH



Nuclear reactor fuel

Nuclear reactors

Reactor fuel rod

© 2024 chempedia.info