Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical copolymerization monomers

In some instances, the resist polymer can be prepared in a single step by direct polymerization of the protected monomer(s) (37,88), entirely avoiding the intermediate PHOST. HOST-containing resist polymers have also been prepared by free-radical copolymerization of a latent HOST and a stable, acid-labile monomer, eg, the copolymerization of acetoxystyrene with tert-huty acrylate, followed by selective removal of the acetoxy group (89) (Fig. 30). [Pg.129]

In all manufacturing processes, grafting is achieved by the free-radical copolymerization of styrene and acrylonitrile monomers in the presence of an elastomer. Ungrafted styrene—acrylonitrile copolymer is formed during graft polymerization and/or added afterward. [Pg.203]

Fig. 1. Comparison of experimental and theoretical values of Mc at free-radical copolymerization of AAm with MBAA as a crosslinking agent CT — total concentration of monomers, C — that of MBAA C = 10 wt% (/), CT = 6.7 g dl-1 (2). From Baselga et al. [18]... Fig. 1. Comparison of experimental and theoretical values of Mc at free-radical copolymerization of AAm with MBAA as a crosslinking agent CT — total concentration of monomers, C — that of MBAA C = 10 wt% (/), CT = 6.7 g dl-1 (2). From Baselga et al. [18]...
To determine the crosslinking density from the equilibrium elastic modulus, Eq. (3.5) or some of its modifications are used. For example, this analysis has been performed for the PA Am-based hydrogels, both neutral [18] and polyelectrolyte [19,22,42,120,121]. For gels obtained by free-radical copolymerization, the network densities determined experimentally have been correlated with values calculated from the initial concentration of crosslinker. Figure 1 shows that the experimental molecular weight between crosslinks considerably exceeds the expected value in a wide range of monomer and crosslinker concentrations. These results as well as other data [19, 22, 42] point to various imperfections of the PAAm network structure. [Pg.119]

Free-radical copolymerization of vinyl acetate with various vinyl siloxane monomers was described 345). Reactions were conducted in benzene at 60 °C using AIBN as the initiator. Reactivity ratios were determined. Selective hydrolysis of the vinyl acetate units in the copolymer backbone was achieved using an aqueous sodium hy-droxide/THF mixture. The siloxane content and degree of hydrolysis were determined by H-NMR. [Pg.57]

More recently, Tsoukas et al. (1982) studied the impact of various control schemes, including temperature and/or monomer addition and/or initiator as manipulated variables, on the performance of a free-radical copolymerization reactor. They formulated the... [Pg.322]

Emulsion breakers are made from acrylic acid or methacrylic acid copolymerized with hydrophilic monomers [148]. The acid groups of acrylic acid and methacrylic acid are oxalkylated by a mixture of polyglycols and polyglycol ethers to provide free hydroxy groups on the molecule. The copolymers are made by a conventional method, for example, by free radical copolymerization in solution, emulsion, or suspension. The oxalkylation is performed in the presence of an acid catalyst, the acid being neutralized by an amine when the reaction is complete. [Pg.335]

Ra, Ra symbol of a-type radical or ion and its concentration kap constant of propagation reaction between Ra and M klap constant of termination reaction between Ra and R rap> rfia reactivity ratios for binary free-radical copolymerization of monomers Ma and M ... [Pg.161]

Monomer concentrations Ma a=, ...,m) in a reaction system have no time to alter during the period of formation of every macromolecule so that the propagation of any copolymer chain occurs under fixed external conditions. This permits one to calculate the statistical characteristics of the products of copolymerization under specified values Ma and then to average all these instantaneous characteristics with allowance for the drift of monomer concentrations during the synthesis. Such a two-stage procedure of calculation, where first statistical problems are solved before dealing with dynamic ones, is exclusively predetermined by the very specificity of free-radical copolymerization and does not depend on the kinetic model chosen. The latter gives the explicit dependencies of the instantaneous statistical characteristics on monomers concentrations and the rate constants of the elementary reactions. [Pg.176]

From the above reasoning it may be concluded that the quantitative theory as it stands today gives the opportunity to provide an exhaustive description of the chemical structure of the products of free-radical copolymerization of any number of monomers m. [Pg.180]

Currently this model is one of the most commonly used in the theory of free-radical copolymerization. The formation of a donor-acceptor complex Ma... iVlbetween monomers Ma and in some systems is responsible for a number of peculiarities absent in the case of the ideal model. Such peculiarities are due to the fact that besides the single monomer addition to a propagating radical, a possibility also exists of monomer addition in pairs as a complex. Here the role of kinetically independent elements is played by ultimate units Ma of growing chains as well as by free (M ) and complex-bound (M ) monomers, whose constants of the rate of addition to the macroradical with a-th ultimate unit will be... [Pg.181]

Free radical copolymerizations of the alkyl methacrylates were carried out in toluene at 60°C with 0.1 weight percent (based on monomer) AIBN initiator, while the styrenic systems were polymerized in cyclohexane. The solvent choices were primarily based on systems which would be homogeneous but also show low chain transfer constants. Methacrylate polymerizations were carried out at 20 weight percent solids... [Pg.87]

The DIS monomer, unlike its iron analogue, did not homopolymerize with SnCl initiator even on heating. A plausible reason for this result is that this monomer contains a lone pair of elec-trons available for donation to Lewis acids.JU Thus side reactions similar to those of the previous two monomers would prevent propagation. However, the DIS monomer also underwent a free radical copolymerization reaction with styrene and AIBN initiation. [Pg.459]

Solvent Effects in the Sn Spectra of Poly(TBTM/MMA). Samples of poly(MMA/TBTM) synthesized by the free-radical copolymerization of the appropriate monomers were solutions in benzene with approximately 33% solids (weight to volume). The particular formulation chosen as representative of the class contained a 1 1 ratio of pendant methyl to tri-n-butyltin groups. In preparing the dry polymer, the benzene was removed in vacuo with nominally 5% by weight residual solvent. [Pg.486]

The relative reactivities (in free-radical copolymerizations) of TBTM and MMA are 0.79 and 1.00 respectively (15). With equal concentrations of monomer, an excess of MMA in the polymer would be expected. In the following discussion A will represent the MAA or TBTM unit and B will represent the MMA unit. For A-centered triads four different arrangements are possible AAA, AAB, BAA, and BAB. Analogous sequences apply to the B-centered triads. For a random compositon, Bernoullian statistics should apply (14). With P (the proportion of TBTM) equal to 0.5, the probabilities of each of the A-centered triads is P 2 or 0.25. The AAB and BAA triads are indistinguishable and appear as a single resonance. [Pg.494]

Our research in this field is mainly carried out on a) synthesis and conversion of oligoorganoepoxystannanes b) free-radical copolymerization of organotin monomers with various vinyl monomers and c) cross-linking of organotin macromolecules and development of protective polymeric coatings with specific properties on their basis. [Pg.111]

Free-radical copolymerization of trimethyl- or tributylvinyltin with styrene or methyl methacrylate results in low ( 10%) yield of copolymer. Moreover, both the reaction rate and viscosity decrease considerably with higher vinyltin content in the starting mixture 49). These findings imply that organotin monomers tend to inhibit free-radical copolymerization. [Pg.118]

Andrianov and Zhdanov have developed a method for the synthesis of polymers containing heterochain and carbon-chain units by free-radical copolymerization of metal-containing polyorganosiloxanes bearing a pendant vinyl group with vinyl monomers. The copolymers thus obtained display increased thermal stability and can be used for the production of laminated plastics, adhesives and other valuable materials 53),... [Pg.119]

According to this scheme the fundamental difference in the mechanism of free-radical copolymerization of MA with TASM and of MA with alkyl acrylates is due to the fact that in the former copolymerization intermolecular coordination is involved. This coordination is similar to the effect of various complexing agents (ZnCl2, SnCft and A1C13) on free-radical homo- and copolymerization of vinyl monomers. This effect seems to favor the appearance of isotactic configurations along the main chain. [Pg.123]

It is likely that the observed coordination interaction between individual segments of the macroradicals and monomer units determines the stereoorientation of free-radical copolymerization of organotin methacrylates with MA. [Pg.123]

To elucidate the reaction mechanism, the kinetics of free-radical copolymerization of the monomers concerned was investigated. [Pg.125]

The obtained value of a indicates the proximity of the rate constant values of the addition of TBSM to the macroradicals MA and of MA to TBSM This can be explained by a similar influence of intermolecular coordination on chain propagation. The values of pt and p2 indicate that in free-radical copolymerization of TBSM with MA both free and complex-bound monomers are involved in chain propagation with a higher contribution of the latter. [Pg.126]

Binary free-radical copolymerizations of organotin derivatives of unsaturated acids (tri-n-butylstannyl methacrylate, bis-triethylstannyl maleate (TESM) and P-phenyl-tri-n-butylstannyl methacrylate (PBSM)) with certain vinyl monomers such as styrene (St) 87) and vinyl chloride (VC) have been studied 24,25,92). [Pg.126]

When studying the free-radical copolymerization of methacrylic and acrylic acids with vinyl monomers, it was established that the addition of catalytic amounts of SnCl and (C6Hs)3SnH has a marked effect on the copolymer composition. It was found that complexes are formed by charge transfer between unsaturated acids and the above tin compounds. It has been suggested that the change in polymer composition is caused by the interaction of the tin compounds with a transition complex resulting in a decrease of the resonance stabilization of the latter 94,). [Pg.128]

In this section, the important concepts related to the formation of hydrogels by free radical copolymerization/cross-linking are examined. Greater depth beyond the scope of this chapter can be obtained from textbooks on polymer chemistry and the papers cited herein. As stated earlier, almost all gels produced from monomers for pharmaceutical applications are synthesized by free radical chain polymerizations. [Pg.494]

Examples considered in this paper deal with binary heteropolymers prepared by the method of chemical modification of homopolymers and by the free-radical copolymerization of a mixture of two monomers, Mi and M2. The products of each of these processes is a mixture of an enormous... [Pg.143]

This assumption is implicitly present not only in the traditional theory of the free-radical copolymerization [41,43,44], but in its subsequent extensions based on more complicated models than the ideal one. The best known are two types of such models. To the first of them the models belong wherein the reactivity of the active center of a macroradical is controlled not only by the type of its ultimate unit but also by the types of penultimate [45] and even penpenultimate [46] monomeric units. The kinetic models of the second type describe systems in which the formation of complexes occurs between the components of a reaction system that results in the alteration of their reactivity [47-50]. Essentially, all the refinements of the theory of radical copolymerization connected with the models mentioned above are used to reduce exclusively to a more sophisticated account of the kinetics and mechanism of a macroradical propagation, leaving out of consideration accompanying physical factors. The most important among them is the phenomenon of preferential sorption of monomers to the active center of a growing polymer chain. A quantitative theory taking into consideration this physical factor was advanced in paper [51]. [Pg.170]

The main peculiarities of the preferential sorption phenomenon have been experimentally examined in detail in a series of papers by Semchikov, Smirnova et al. [61-76]. Investigating the free-radical copolymerization in bulk of about 30 concrete pairs of the most commonly encountered vinyl monomers, they revealed the following characteristic features of this phenomenon ... [Pg.171]


See other pages where Free radical copolymerization monomers is mentioned: [Pg.7]    [Pg.395]    [Pg.916]    [Pg.19]    [Pg.50]    [Pg.54]    [Pg.19]    [Pg.227]    [Pg.916]    [Pg.176]    [Pg.185]    [Pg.276]    [Pg.357]    [Pg.450]    [Pg.484]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.489]    [Pg.615]    [Pg.172]    [Pg.172]   
See also in sourсe #XX -- [ Pg.3 , Pg.11 , Pg.14 , Pg.310 , Pg.314 ]




SEARCH



Copolymerization monomers

Free Radical Copolymerizations

Free-radical copolymerization

Monomer radical

Radical copolymerization

© 2024 chempedia.info