Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional separation, process

This method (FlFFF) is another member of the field-flow fractionation family, with measurement capabilities somewhat like those of SdFFF (18). The basic field-flow fractionation separation process is retained in this method. Particles separate because they are intercepted by different flow stream velocities near the accumulation wall. However, in this FFF method, particles equilibrate at distances from the wall strictly as a function of their size (Stokes radius). The nearness to the wall is a balance of the cross flow in the channel pushing particles toward the wall and normal diffusion tending to move them away. [Pg.284]

Separation Processes that split a feed into simpier or narrower fractions. [Pg.366]

Foams have a wide variety of appHcations that exploit their different physical properties. The low density, or high volume fraction of gas, enable foams to float on top of other fluids and to fiU large volumes with relatively Httle fluid material. These features are of particular importance in their use for fire fighting. The very high internal surface area of foams makes them useful in many separation processes. The unique rheology of foams also results in a wide variety of uses, as a foam can behave as a soHd, while stiH being able to flow once its yield stress is exceeded. [Pg.431]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Volatilization. In this simplest separation process, the impurity or the base metal is removed as a gas. Lead containing small amounts of zinc is refined by batch vacuum distillation of the zinc. Most of the zinc produced by smelting processes contains lead and cadmium. Cmde zinc is refined by a two-step fractional distillation. In the first column, zinc and cadmium are volatilized from the lead residue, and in the second column cadmium is removed from the zinc (see Zinc and zinc alloys). [Pg.169]

The early developments of solvent processing were concerned with the lubricating oil end of the cmde. Solvent extraction processes are appHed to many usefiil separations in the purification of gasoline, kerosene, diesel fuel, and other oils. In addition, solvent extraction can replace fractionation in many separation processes in the refinery. For example, propane deasphalting (Fig. 7) has replaced, to some extent, vacuum distillation as a means of removing asphalt from reduced cmde oils. [Pg.208]

In the wood rosin process, rosin is isolated from aged pine stumps that have been left in fields cleared for farming or lumbering operations. The stumps are cut and shredded to pieces the size of matchsticks. The wood chips are then extracted with an appropriate solvent, eg, aUphatic or aromatic petroleum hydrocarbons or ketones. The extract is fractionally separated into nonvolatile cmde rosin, volatile extractibles, and recovered solvent. The dark rosin is usually refined further to lighter-colored products using selective solvents or absorption. [Pg.138]

Zone refining is one of a class of techniques known as fractional solidification in which a separation is brought about by crystallization of a melt without solvent being added (see also Crystallization) (1 8). SoHd—Hquid phase equiUbria are utilized, but the phenomena are much more complex than in separation processes utilizing vapor—Hquid equiHbria. In most of the fractional-solidification techniques described in the article on crystallization, small separate crystals are formed rapidly in a relatively isothermal melt. In zone refining, on the other hand, a massive soHd is formed slowly and a sizable temperature gradient is imposed at the soHd—Hquid interface. [Pg.446]

Reversible Processes. Distillation is an example of a theoretically reversible separation process. In fractional distillation, heat is introduced at the bottom stiUpot to produce the column upflow in the form of vapor which is then condensed and turned back down as Hquid reflux or column downflow. This system is fed at some intermediate point, and product and waste are withdrawn at the ends. Except for losses through the column wall, etc, the heat energy spent at the bottom vaporizer can be recovered at the top condenser, but at a lower temperature. Ideally, the energy input of such a process is dependent only on the properties of feed, product, and waste. Among the diffusion separation methods discussed herein, the centrifuge process (pressure diffusion) constitutes a theoretically reversible separation process. [Pg.75]

Irreversible processes are mainly appHed for the separation of heavy stable isotopes, where the separation factors of the more reversible methods, eg, distillation, absorption, or chemical exchange, are so low that the diffusion separation methods become economically more attractive. Although appHcation of these processes is presented in terms of isotope separation, the results are equally vaUd for the description of separation processes for any ideal mixture of very similar constituents such as close-cut petroleum fractions, members of a homologous series of organic compounds, isomeric chemical compounds, or biological materials. [Pg.76]

For the case of separating a binary mixture, the following conventions are used. The concentrations of the streams are specified by the mol fraction of the desired component. The purpose of the separation process is usually to obtain one component of the mixture in an enriched form. If both components are desired, the choice of the desired component is an arbitrary one. The upflowing stream from the separation stage is the one in which the desired component is enriched, and by virtue of this convention, a is defined as a quantity the value of which is greater than unity. However, for the processes considered here, a exceeds unity by only a very small fraction, and the relationship between the concentrations leaving the stage can be written, without appreciable error, in the form... [Pg.76]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

Solvent separation, using the propane deasphalting process, is another procedure by which asphalts of the straight reduced type may be manufactured. This is a physical separation process used to recover high viscosity lube fractions from a given vacuum residuum. When mixed with the residuum, the solvent preferentially dissolves the oil and precipitates the asphalt. [Pg.233]

The primary process for separating the hydrocarbon components of crude oil is fractional distillation i.e. separation according to the boiling points of the components. These separated fractions are processed further by catalytic reformers, cracking units, alkylation units, or cokers which have there own fractional distillation towers for its products. [Pg.286]

The purity ot the scrap mainly determines the fraction of energy needed to produce metal from it, and the value of recycling. Clean copper scrap need only be remelted and cast to form recycled copper if the copper is contaminated with organic materials and other metals, more complex separation processes are needed that are similar to production from ores. It is easier to remelt the steel of a car driven in Arizona compared to one rusted by the road salt in snowy areas. Scrap that is produced as a by-product of metal processing can be easily recycled, and it can be collected from relatively few locations. There has been a strong effort to educate both householders and industrial users to separate scrap and return it to waste collectors, leading to a supply of reasonably separated scrap. [Pg.773]

Because p-xylene is the most valuable isomer for producing synthetic fibers, it is usually recovered from the xylene mixture. Fractional crystallization used to be the method for separating the isomers, but the yield was only 60%. Currently, industry uses continuous liquid-phase adsorption separation processes.The overall yield of p-xylene is increased... [Pg.39]

A more accurate analysis of this problem incorporating renormalization results, is possible [86], but the essential result is the same, namely that stretched, tethered chains interact less strongly with one another than the same chains in bulk. The appropriate comparison is with a bulk-like system of chains in a brush confined by an impenetrable wall a distance RF (the Flory radius of gyration) from the tethering surface. These confined chains, which are incapable of stretching, assume configurations similar to those of free chains. However, the volume fraction here is q> = N(a/d)2 RF N2/5(a/d)5/3, as opposed to cp = N(a/d)2 L (a/d)4/3 in the unconfined, tethered layer. Consequently, the chain-chain interaction parameter becomes x ab N3/2(a/d)5/2 %ab- Thus, tethered chains tend to mix, or at least resist phase separation, more readily than their bulk counterparts because chain stretching lowers the effective concentration within the layer. The effective interaction parameters can be used in further analysis of phase separation processes... [Pg.54]

In processing, it is frequently necessary to separate a mixture into its components and, in a physical process, differences in a particular property are exploited as the basis for the separation process. Thus, fractional distillation depends on differences in volatility. gas absorption on differences in solubility of the gases in a selective absorbent and, similarly, liquid-liquid extraction is based on on the selectivity of an immiscible liquid solvent for one of the constituents. The rate at which the process takes place is dependent both on the driving force (concentration difference) and on the mass transfer resistance. In most of these applications, mass transfer takes place across a phase boundary where the concentrations on either side of the interface are related by the phase equilibrium relationship. Where a chemical reaction takes place during the course of the mass transfer process, the overall transfer rate depends on both the chemical kinetics of the reaction and on the mass transfer resistance, and it is important to understand the relative significance of these two factors in any practical application. [Pg.573]

Sampling Procedure. The sample extraction technique previously described was used in this work (8). However, a heated palladium thimble was also used to separate hydrogen and hydrocarbon fractions of the samples. No exchange occurred during the separation process in agreement with observations of other workers (30). In experiments using NH3 as a minor additive, the ammonia fraction was separated by means of appropriate cold traps. [Pg.285]


See other pages where Fractional separation, process is mentioned: [Pg.351]    [Pg.414]    [Pg.101]    [Pg.85]    [Pg.394]    [Pg.408]    [Pg.524]    [Pg.525]    [Pg.529]    [Pg.444]    [Pg.138]    [Pg.69]    [Pg.359]    [Pg.42]    [Pg.366]    [Pg.449]    [Pg.155]    [Pg.1423]    [Pg.2001]    [Pg.204]    [Pg.204]    [Pg.229]    [Pg.784]    [Pg.152]    [Pg.179]    [Pg.182]    [Pg.17]    [Pg.792]    [Pg.119]    [Pg.180]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Fractionation process

Fractionation separation

Processing separation

Separation fractions

Separation processes

© 2024 chempedia.info