Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional emission ratio

Finally the so-called mono- and macro-tracer approaches can be applied for determining source contributions. These methods rely on the fact that a number of chemical compounds can be directly linked to biomass combustion emissions. For example, ambient concentrations of water-soluble potassium, certain PAHs, anhydrosugars and many other tracers have been used as indicators for the impact of biomass burning. When the fractions of one of these tracers in PM and carbonaceous aerosols emitted by wood burning are known (emissions ratios), the contribution of wood burning at a receptor site can be calculated based on the concentration of the considered tracer (mono tracer method). [Pg.129]

Figure 13.14 a) The variation of theoretical Purcell factor (solid circle) and experimental PL enhancement ratio (solid square) with Al mole fraction in air / AlxAgl-x / ZnO structure. The lines are for visualization, b) The PL emission ratio (solid) and Fp (dash) at a = 1 nm spectra for A10.77Ag0.23 / ZnO [37]. [Pg.409]

The photomultiplier, as shown in Fig. 6, is almost universally used as a photon counter, that is, the internal electron multiplication produces an output electrical pulse whose voltage is large compared with the output electric circuit noise. Each pulse in turn is the result of an individual photoexcited electron. The numbered electrodes, 1-8, called dynodes, are each successively biased about 100 V positive with respect to the preceding electrode, and an accelerated electron typically produces about 5 secondary electrons as it impacts the dynode. The final current pulse collected at the output electrode, the anode, would in this case contain 5 400,000 electrons. The secondary emission multiplication process is random, the value of the dynode multiplication factor is close to Poisson distributed from electron to electron. The output pulse amplitude thus fluctuates. For a secondary emission ratio of = 5, the rms fractional pulse height fluctuation is 1 /V<5 — 1 = 0.5. Since the mean pulse height can be well above the output circuit noise, the threshold for a pulse count may be... [Pg.219]

Since the rate of decay of a vacancy state is the sum of radiative and nonradiative transition rates, the ratios of the intensities of individual X-ray lines are proportional to the ratio of the rates for the corresponding transitions. The fractional emission rates Fij (where i is the munber of subshell and j is the transition e.g.. For L we take Fsa) is defined as ... [Pg.54]

In comparing the radiative properties of materials to those of a blackbody, fhe terms absorptivity and emissivity are used. Absorptivity is the amount of radiant energy absorbed as a fraction of the total amount that falls on the object. Absorptivity depends on both frequency and temperature for a blackbody if is 1. Emissivity is the ratio of the energy emitted by an object to that of a blackbody at the same temperature. It depends on both the properties of fhe subsfance and the frequency. Kirchhoff s law states that for any substance, its emissivity at a given wavelength and temperature equals its absorptivity. Note that the absorptivity and emissivity of a given substance may be quite variable for different frequencies. [Pg.245]

As shown in Fig. 3, CHEMGL considers 10 major well-mixed compartments air boundary layer, free troposphere, stratosphere, surface water, surface soil, vadose soil, sediment, ground water zone, plant foliage and plant route. In each compartment, several phases are included, for example, air, water and solids (organic matter, mineral matter). A volume fraction is used to express the ratio of the phase volume to the bulk compartment volume. Furthermore, each compartment is assumed to be a completely mixed box, which means all environmental properties and the chemical concentrations are uniform in a compartment. In addition, the environmental properties are assumed to not change with time. Other assumptions made in the model include continuous emissions to the compartments, equilibrium between different phases within each compartment and first-order irreversible loss rate within each compartment [38]. [Pg.55]

The ratio of the intensity of anti-Stokes and Stokes lines is primarily determined by the Boltzmann population of the excited vibrational states. For mid-IR frequencies this fractional population is very low (seIO-4 at 2000cm-1). As a result, Raman spectra are usually taken from the Stokes side of the Rayleigh line as these are generally very much more intense and are not broadened by emissions from hot states. [Pg.117]

An equation analogous to (28) can also be written for the ratio n / ° in a depletion region. It would be conceivable for all three charge states, H+, H°, and H , to exist together in a depletion region, with steady-state concentrations having universal ratios dependent only on the four carrier emission rates. As we shall see in Section 4a in III, however, experiments suggest that H+ and H° have the major roles, with n+ a fraction of n0. The... [Pg.259]

Furthermore factors such as stoichiometric value, heat load and design of the burner as well as the combustion chamber have a significant impact on the emission of pollutant gases. Depending on the reaction of a combustion system to a changing equivalence ratio decisions can be made how to minimize the pollutant emissions by adapting the flow rate of air or gas. A combustion control system based on monitoring the CO fraction in the flue gas could thus be considered. [Pg.39]

The ratio, Nj/N0, can therefore be calculated. For the relatively easily excited alkali metal sodium, it is 9.9 x 10 6 at 2000 °K and 5.9 x 10 4 at 3000 °K this latter temperature is about the highest commonly obtained with flames used for atomic absorption or emission work. Hence, only about 1(T3 % of the sodium atoms are excited at 2000 ° and 6 x 1(F2 % at 3000°. For an element such as zinc,Nf/N0 is 5.4 x 10"10 at 3000 and so only 5 x 10"8% is excited. In spite of the small fraction excited, good sensitivities can be obtained for many elements by flame photometry if a high temperature flame is used, because the difference between zero and a small but finite number is measured. For example, seventy elements can be determined by flame photometry using the nitrous oxide-acetylene flame 1H. [Pg.81]

Nanocarbon emitters behave like variants of carbon nanotube emitters. The nanocarbons can be made by a range of techniques. Often this is a form of plasma deposition which is forming nanocrystalline diamond with very small grain sizes. Or it can be deposition on pyrolytic carbon or DLC run on the borderline of forming diamond grains. A third way is to run a vacuum arc system with ballast gas so that it deposits a porous sp2 rich material. In each case, the material has a moderate to high fraction of sp2 carbon, but is structurally very inhomogeneous [29]. The material is moderately conductive. The result is that the field emission is determined by the field enhancement distribution, and not by the sp2/sp3 ratio. The enhancement distribution is broad due to the disorder, so that it follows the Nilsson model [26] of emission site distributions. The disorder on nanocarbons makes the distribution broader. Effectively, this means that emission site density tends to be lower than for a CNT array, and is less controllable. Thus, while it is lower cost to produce nanocarbon films, they tend to have lower performance. [Pg.346]

The emission index in general is defined as the mass of pollutant emitted per unit mass of fuel consumed. In quasi-steady diffusion flames, this is the ratio of the mass flux of pollutant out of the flame to the mass rate of consumption of fuel per unit flame area. Depending on the application, it may be more desirable to consider only the flux of pollutant to the air or the sum of the pollutant flux to both air and fuel. The latter definition is selected here, and a pollutant balance for the flame then enables the emission index to be expressed as the ratio of the mass rate of production of pollutant per unit area to the mass rate of consumption of fuel per unit area. In terms of the mass rate of production of species i per unit volume cDj, the mixture fraction, and the magnitude of its gradient VZ, the mass rate of production of species i per unit area is... [Pg.410]

At very high temperatures, above 3 or 4 billion k, silicon is consumed so quickly that positron emission and electron capture reactions which might modify the n/p ratio are largely short-circuited. The weak interaction does not have time to convert any appreciable fraction of protons into neutrons during the brief period of thermonuclear combustion. It follows that, starting with matter that is initially dominated by nuclei containing equal numbers of neutrons and protons, such as oxygen-16 and silicon-28, the final products must conserve Z = N, unless they move away from nuclear stability beyond calcium-40, the last stable a element. [Pg.219]

Results For the St. Louis data, the target transformation analysis results for the fine fraction without July Uth and 5th are given in table 6. The presence of a motor vehicle source, a sulfur source, a soil or flyash source, a titanium source, and a zinc source are indicated. The sulfur, titanium and zinc factors were determined from the simple initial test vectors for those elements. The concentration of sulfur was not related to any other elements and represents a secondary sulfate aerosol resulting from the conversion of primary sulfur oxide emissions. Titanium was found to be associated with sulfur, calcium, iron, and barium. Rheingrover ( jt) identified the source of titanium as a paint-pigment factory located to the south of station 112. The zinc factor, associated with the elements chlorine, potassium, iron and lead, is attributed to refuse incinerator emissions. This factor could also represent particles from zinc and/or lead smelters, though a high chlorine concentration is usually associated with particles from refuse incinerators ( ). The sulfur concentration in the refined sulfate factor is consistent with that of ammonium sulfate. The calculated lead concentration in the motor vehicle factor of ten percent and a lead to bromine ratio of about 0.28 are typical of values reported in the literature (25). The concentration of lead in... [Pg.37]


See other pages where Fractional emission ratio is mentioned: [Pg.178]    [Pg.182]    [Pg.417]    [Pg.193]    [Pg.515]    [Pg.73]    [Pg.53]    [Pg.41]    [Pg.172]    [Pg.63]    [Pg.273]    [Pg.89]    [Pg.292]    [Pg.126]    [Pg.215]    [Pg.353]    [Pg.131]    [Pg.271]    [Pg.427]    [Pg.16]    [Pg.170]    [Pg.464]    [Pg.585]    [Pg.198]    [Pg.131]    [Pg.487]    [Pg.462]    [Pg.179]    [Pg.252]    [Pg.120]    [Pg.62]    [Pg.269]    [Pg.902]    [Pg.23]    [Pg.320]    [Pg.284]   
See also in sourсe #XX -- [ Pg.834 ]




SEARCH



Fractionation ratio

© 2024 chempedia.info