Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform spectroscopy proteins

Oldfield, E., and Allerhand, A. (1975)./. Amer. Chem. Soc. 97, 221. Identification of Tryptophan Resonances in Natural Abundance Carbon-13 Nuclear Magnetic Resonance Spectra of Proteins. Application of Partially Relaxed Fourier Transform Spectroscopy. [Pg.421]

Orosco MM, Pacholski C, Miskelly GM, Sailor MJ (2006) Protein-coated porous silicon photonic crystals for amplified optieal detection of protease activity. Adv Mater 18 1393-1396 Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers reflective interferometric Fourier transform spectroscopy. J Am ChemSoc 127 11636-11645... [Pg.87]

The sequence of a globular protein was confirmed by a combination of enzymatic digestion and HPLC with both Fourier-transform infrared spectroscopy (LC-FTIR spectroscopy) and mass spectrometry [11]. [Pg.209]

Gordon, L.M., Lee, K.Y.C., Lipp, M.M., Zasadzinski, J.A., Walther, F.J., Sherman, M. A., and Waring, A.J. Conformational mapping of the N-terminal segment of surfactant protein B in lipid using C-13-enhanced Fourier transform infrared spectroscopy. J. Peptide Res. [Pg.31]

The conformational changes which have been described so far are probably all relatively small local changes in the structure of H,K-ATPase. This has been confirmed by Mitchell et al. [101] who demonstrated by Fourier transform infrared spectroscopy that a gross change in the protein secondary structure does not occur upon a conformational change from Ei to 3. Circular dichroism measurements, however [102,103], indicated an increase in a-helical structure upon addition of ATP to H,K-ATPase in the presence of Mg and... [Pg.36]

The availability of the purified transporter in large quantity has enabled investigation of its secondary structure by biophysical techniques. Comparison of the circular dichroism (CD) spectrum of the transporter in lipid vesicles with the CD spectra of water-soluble proteins of known structure indicated the presence of approximately 82% a-helix, 10% ) -turns and 8% other random coil structure [97]. No / -sheet structure was detected either in this study or in a study of the protein by the same group using polarized Fourier transform infrared (FTIR) spectroscopy [98]. In our laboratory FTIR spectroscopy of the transporter has similarly revealed that... [Pg.184]

It is generally assumed the fluorescence and Fourier transform mid-infrared (FT-IR) spectroscopies do not suffer from the above-mentioned inconveniences and may be applied to turbid samples. Front-face (fluorescence) and attenuated total reflection (FT-IR) techniques may provide information on the structure of adsorbed proteins. [Pg.266]

McGovern, A. C. Ernill, R. Kara, B. V. Kell, D. B. Goodacre, R. Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics Application to a2- interferon production. J. Biotechnol. 1999, 72,157-167. [Pg.340]

Varenne, A., Salmain, M., Brisson, C., and Jaouen, G. (1992) Transition metal carbonyl labeling of proteins. A novel approach to a solid-phase two-site immunoassay using Fourier transform infrared spectroscopy. Bioconjugate Chem. 3, 471-476. [Pg.1124]

A review by Dong et al. [3.57] provides an overview of how Fourier transform JR spectroscopy can be used to study protein stabilization and to prevent lyophilization- induced protein aggregation. An introduction to the study of protein secondary structures and the processing and interpretation of protein IR spectra is given. [Pg.207]

Chen, X., Knight, D. P., Shao, Z. Z., and Vollrath, F. (2002). Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy Effect of potassium ions on Nephila spidroin films. Biochemistry 41, 14944-14950. [Pg.44]

Vandenbussche G, Clercx A, Clercx M, et al. Secondary structure and orientation of the surfactant protein SP-B in a lipid environment. A Fourier transform infrared spectroscopy study. Biochemistry 1992 31(38) 9169-9176. [Pg.315]

Fourier transform infrared/photoacoustic spectroscopy (FT-IR/PAS) can be used to evaluate the secondary structure of proteins, as demonstrated by experiments on concanavalin A, hemoglobin, lysozyme, and trypsin, four proteins having different distributions of secondary... [Pg.296]

Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

Fourier transform infrared spectroscopy (FTIR) s Measures protein and carbohydrate vibrational, stretching, and bending energies... [Pg.292]

Spectroscopic, that is, fluorescence and circular dichroism (CD), fourier transform infared (FTIR) measurements have been widely applied to analyzing changes in enzyme structures in an attempt to explain the stabilization or denaturation phenomena associated with enzyme environments, for example, temperature, solvents, and so on. All these measurements can also be performed in ILs where fluorescence and CD spectroscopy demonstrated the conformational changes in the native structure of calcium binding proteins (CALB) which resulted in the higher s)mthetic activity and stability in ILs as compared to those obtained in classical organic solvents [18].The stabilization of enzymes by ILs may be related to the associated structural changes of proteins [19]. [Pg.298]

The wavelengths of IR absorption bands are characteristic of specific types of chemical bonds. In the past infrared had little application in protein analysis due to instrumentation and interpretation limitations. The development of Fourier transform infrared spectroscopy (FUR) makes it possible to characterize proteins using IR techniques (Surewicz et al. 1993). Several IR absorption regions are important for protein analysis. The amide I groups in proteins have a vibration absorption frequency of 1630-1670 cm. Secondary structures of proteins such as alpha(a)-helix and beta(P)-sheet have amide absorptions of 1645-1660 cm-1 and 1665-1680 cm, respectively. Random coil has absorptions in the range of 1660-1670 cm These characterization criteria come from studies of model polypeptides with known secondary structures. Thus, FTIR is useful in conformational analysis of peptides and proteins (Arrondo et al. 1993). [Pg.149]

Arrondo, J.L., Muga, A., Castresana, J., Goni, F.M. (1993). Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog. Biophys. Molec. Biol., 59, 23-56. [Pg.174]

Surewicz, W.K., Mantsch, H.H., Chapman, D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy A critical assessment. Biochemistry, 32, 389-394. [Pg.178]


See other pages where Fourier transform spectroscopy proteins is mentioned: [Pg.87]    [Pg.735]    [Pg.222]    [Pg.647]    [Pg.224]    [Pg.295]    [Pg.107]    [Pg.364]    [Pg.365]    [Pg.60]    [Pg.712]    [Pg.118]    [Pg.218]    [Pg.151]    [Pg.151]    [Pg.111]    [Pg.115]    [Pg.22]    [Pg.306]    [Pg.356]    [Pg.23]    [Pg.95]    [Pg.618]    [Pg.699]    [Pg.155]    [Pg.716]    [Pg.224]    [Pg.148]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Fourier spectroscopy

Fourier transform spectroscopy

© 2024 chempedia.info