Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform infrared structure resonance

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

Final justification for using terms such as inner- or outer-sphere awaits direct spectroscopic confirmation. Electron Spin Resonance, Mossbauer, and Fourier Transform Infrared-Cylindrical Internal Reflection Spectroscopic techniques are being used to establish the structure of surface complexes (see, e.g., McBride, Ambe et al., and Zeltner et al., this volume). The potential for using EXAFS (extended x-ray absorption fine structure) to establish the type of surface complex for Pb + adsorbing onto goethite is currently being undertaken in our laboratory. [Pg.120]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...
Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

This article will review the impact of two powerful new techniques for characterizing epoxy resins at the molecular level — Fourier transform infrared spectroscopy (FT-IR) and high resolution nuclear magnetic resonance (NMR) of solids. Fortunately, these two techniques are not inhibited appreciably by the insoluble nature of the cured resin. Consequently, substantial structural information at the molecular level can be obtained. In this article, the basis of the methods will be briefly described in order to appreciate the nature of the methods followed by a description of the work on epoxies to date and finally some indication will be given of the anticipated contributions of these methods in the future. [Pg.74]

Due to the complexity of DOM fractionation has revealed more detailed information on the structural subunits prior to the application of advanced analytical methods. Most effective is the combination of different spectroscopic methods using UV-vis absorbance, fluorescence, 1H- and 13C-nuclear magnetic resonance, and Fourier transform-infrared (FT-IR) spectroscopy. In some studies, also electron paramagnetic resonance spectroscopy (EPR) is used (e.g., Chen et al., 2002). [Pg.383]

Spectroscopy has become a powerful tool for the determination of polymer structures. The major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. One chapter is devoted to (multi) hyphenated thermograviometric analysis (TGA) techniques, i.e., TGA combined with Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy, gas chromatography, differential scanning calorimetry and differential thermal analysis. There are already many excellent textbooks on the basic principles of these methods. Therefore, the main objective of the present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. The contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials. [Pg.654]

The possibilities of application of far-UV circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy in analysis of thermal stability of proteins and structural changes within protein molecules as well in explanation of cross reactivity between food allergens have been described in more detail in Section 3.4. Likewise nuclear magnetic resonance (NMR), especially 2D and multidimensional NMR as well as the method based on diffraction of monochromatic x-rays widely used in examination of tertiary structures of allergens have been described in Section 3.4 and by Neudecker et al. (2001) and Schirmer et al. (2005). [Pg.92]

In the author s opinion, the better approach to experimentally study the morphology of the silica surface is with the help of physical adsorption (see Chapter 6). Then, with the obtained, adsorption data, some well-defined parameters can be calculated, such as surface area, pore volume, and pore size distribution. This line of attack (see Chapter 4) should be complemented with a study of the morphology of these materials by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy (SPM), or atomic force microscopy (AFM), and the characterization of their molecular and supramolecular structure by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry, thermal methods, and possibly with other methodologies. [Pg.85]

The main spectrometric identification techniques employed are gas chromatography/mass spectrometry (GC/MS) (13), liquid chromatography/tandem mass spectrometry (LC/MS(/MS)) (14), nuclear magnetic resonance (NMR) (11), and/or gas chromatography/Fourier transform infrared spectroscopy (GC/FL1R) (15). Each of these spectrometric techniques provides a spectrum that is characteristic of a chemical. MS and NMR spectra provide (detailed) structural information (like a fingerprint ), whereas an FUR spectrum provides information on functional groups. [Pg.98]

In the case of an unknown chemical, or where resonance overlap occurs, it may be necessary to call upon the full arsenal of NMR methods. To confirm a heteronuclear coupling, the normal H NMR spectrum is compared with 1H 19F and/or XH 31 P NMR spectra. After this, and, in particular, where a strong background is present, the various 2-D NMR spectra are recorded. Homonuclear chemical shift correlation experiments such as COSY and TOCSY (or some of their variants) provide information on coupled protons, even networks of protons (1), while the inverse detected heteronuclear correlation experiments such as HMQC and HMQC/TOCSY provide similar information but only for protons coupling to heteronuclei, for example, the pairs 1H-31P and - C. Although interpretation of these data provides abundant information on the molecular structure, the results obtained with other analytical or spectrometric techniques must be taken into account as well. The various methods of MS and gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy supply complementary information to fully resolve or confirm the structure. Unambiguous identification of an unknown chemical requires consistent results from all spectrometric techniques employed. [Pg.343]

Infrared spectroscopy (IR) is one of the oldest instrumental analytical techniques but its value in structural analysis has decreased with the rise of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Compared to the traditional dispersive IR techniques, Fourier transform infrared spectroscopy (FTIR) offers more sampling techniques. [Pg.353]

Usami, T., Itih, T., Ohtani, H., Tsuge, S. (1990) Structural study of polyacrylonitrile libers during oxidative thermal degradation by pyrolysis-gas chromatography, solid state 13C Nuclear magnetic resonance and Fourier transform infrared spectroscopy, Macromolecules 23, 2460-2465. [Pg.585]

Misra et al. [113] have reported the synthesis and optical/electrical properties of new 5-coordinated Al-complexes designed as Alq(l) and Alq(2). The complexes are vacuum evaporable as well as soluble in many organic solvents. EL peaks of these new complexes emit in the range 522-523 nm, which is nearly 8 nm blue shifted compared to that of Alq3. The chemical structures of the complexes were determined with the help of the Hydrogen Nuclear Magnetic Resonance (HNMR) and Fourier Transform Infrared (FTIR) spectroscopy techniques. The structure of these complexes is shown in Fig. 4.13. [Pg.102]

Although they may be part of a catalyst testing [1-3] programme, investigations focused on revealing the reaction mechanism, such as in-situ Fourier transform infrared (FTIR) in transmission or reflection mode, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), X-ray absorption fine-structure spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), electron spin resonance (ESR), and UV-visible (UV-vis) and the reaction cells used are not included. For the correct interpretation of the results, however, this chapter may also provide a worthwhile guide. [Pg.384]

Simple and rapid spectroscopic methods, such as front-face fluorescence, attenuated total reflectance Fourier-transform infrared and nuclear magnetic resonance spectroscopies, have a great potential for investigation of the structure of fats in dairy products and of the relation between structure and texture. Although fluorescence, infrared and NMR spectroscopies are techniques, the theory and methodology of which have been exploited extensively in studies in both chemistry and biochemistry, the usefulness of these spectroscopies for molecular studies has not been yet fully recognized in food science. Fluorescence, infrared and NMR spectroscopies coupled... [Pg.705]

Methods in the analysis of drug impurities (e.g., ultraviolet, UV Fourier transform infrared, FT-IR nuclear magnetic resonance, NMR mass spectrometry, MS) are used to separate, identify, and quantify impurities, as well as establish their structure. Currently the most efficient methods seem to be combined techniques such as GC-MS, LC-MS, liquid chromatography-diode-array detection-mass spectrometry (LC-DAD-MS), LC-NMR, LC-DAD-NMR-MS, etc. [18-20]. [Pg.189]

The crystalline mineral silicates have been well characterized and their diversity of structure thoroughly presented (2). The structures of siHcate glasses and solutions can be investigated through potentiometric and dye adsorption studies, chemical derivatization and gas chromatography, and laser Raman, infrared (ffir), and Si Fourier transform nuclear magnetic resonance ( Si ft-nmr) spectroscopy. References 3—6 contain reviews of the general chemical and physical properties of siHcate materials. [Pg.3]

A considerable number of different techniques has been employed in the past to characterize the porosity and surface chemistry of porous carbon materials. These include gas adsorption (mostly N2 and CO2) [9-14], immersion calorimetry [9], small-angle X-ray [11,15] and neutron [14] scattering, inverse gas chromatography [12,13], differential thermal analysis [12], Fourier transform infrared [12], Raman [16] and X-ray photoelectron [17] spectroscopies and electron spin resonance [16]. It is worth mentioning that the information about the porous structure of the material provided by this array of techniques is only indirect... [Pg.529]


See other pages where Fourier transform infrared structure resonance is mentioned: [Pg.43]    [Pg.198]    [Pg.10]    [Pg.246]    [Pg.72]    [Pg.337]    [Pg.240]    [Pg.242]    [Pg.1]    [Pg.311]    [Pg.518]    [Pg.101]    [Pg.151]    [Pg.5]    [Pg.265]    [Pg.28]    [Pg.3]    [Pg.179]    [Pg.172]    [Pg.136]    [Pg.433]    [Pg.1]    [Pg.2299]    [Pg.6574]    [Pg.126]    [Pg.417]    [Pg.548]    [Pg.3938]    [Pg.134]   


SEARCH



Fourier transform infrared

Resonance structures

Structural infrared

Structural transformation

Structure transformation

© 2024 chempedia.info