Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform infrared recent applications

Recent work in our laboratory has shown that Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) can be used routinely to measure vibrational spectra of a monolayer on a low area metal surface. To achieve sensitivity and resolution, a pseudo-double beam, polarization modulation technique was integrated into the FT-IR experiment. We have shown applicability of FT-IRRAS to spectral measurements of surface adsorbates in the presence of a surrounding infrared absorbing gas or liquid as well as measurements in the UHV. We now show progress toward situ measurement of thermal and hydration induced conformational changes of adsorbate structure. The design of the cell and some preliminary measurements will be discussed. [Pg.435]

In Chapter 12, the use of mass spectrometry and Fourier transform infrared spectrometry (FTIR) for GC detection was discussed. Details of these techniques were individually given in Chapters 10 and 12. Much of the discussion presented in Chapter 16 is applicable here. Both liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-infrared spectrometry (LC-IR) have been adapted to HPLC detection in recent years. [Pg.383]

The infrared technique has been described in numerous publications and recent reviews were published by Davies and Giangiacomo (2000), Ismail et al. (1997) and Wetzel (1998). Very few applications have been described for analysis of additives in food products. One interesting application is for controlling vitamin concentrations in vitamin premixes used for fortification of food products by attenuated total reflectance (ATR) accessory with Fourier transform infrared (FTIR) (Wojciechowski et al., 1998). Four vitamins were analysed - Bi (thiamin), B2 (riboflavin), B6 (vitamin B6 compounds) and Niacin (nicotinic acid) - in about 10 minutes. The partial least squares technique was used for calibration of the equipment. The precision of measurements was in the range 4-8%, similar to those obtained for the four vitamins by the reference HPLC method. [Pg.130]

With the recent progress in Fourier transform infrared (FTIR) spectroscopy, quantitative estimates of the various functional groups can also be made. This is particularly important for application to the higher-molecular-weight solid constituents of petroleum (i.e., the asphaltene fraction). [Pg.45]

An integrated GC/IR/MS instrument is a powerful tool for rapid identification of thermally generated aroma compounds. Fourier transform infrared spectroscopy (GC/IR) provides a complementary technique to mass spectrometry (MS) for the characterization of volatile flavor components in complex mixtures. Recent improvements in GC/IR instruments have made it possible to construct an integrated GC/IR/HS system in which the sensitivity of the two spectroscopic detectors is roughly equal. The combined system offers direct correlation of IR and MS chromatograms, functional group analysis, substantial time savings, and the potential for an expert systems approach to identification of flavor components. Performance of the technique is illustrated with applications to the analysis of volatile flavor components in charbroiled chicken. [Pg.61]

The thermal characterisation of elastomers has recently been reviewed by Sircar [28] from which it appears that DSC followed by TG/DTG are the most popular thermal analysis techniques for elastomer applications. The TG/differential thermal gravimetry (DTG) method remains the method of choice for compositional analysis of uncured and cured elastomer compounds. Sircar s comprehensive review [28] was based on single thermal methods (TG, DSC, differential thermal analysis (DTA), thermomechanical analysis (TMA), DMA) and excluded combined (TG-DSC, TG-DTA) and simultaneous (TG-fourier transform infrared (TG-FTIR), TG-mass spectroscopy (TG-MS)) techniques. In this chapter the emphasis is on those multiple and hyphenated thermogravimetric analysis techniques which have had an impact on the characterisation of elastomers. The review is based mainly on Chemical Abstracts records corresponding to the keywords elastomers, thermogravimetry, differential scanning calorimetry, differential thermal analysis, infrared and mass spectrometry over the period 1979-1999. Table 1.1 contains the references to the various combined techniques. [Pg.2]

One of the emerging biological and biomedical application areas for vibrational spectroscopy and chemometrics is the characterization and discrimination of different types of microorganisms [74]. A recent review of various FTIR (Fourier transform infrared spectrometry) techniques describes such chemometrics methods as hierarchical cluster analysis (HCA), principal component analysis (PCA), and artificial neural networks (ANN) for use in taxonomical classification, discrimination according to susceptibility to antibiotic agents, etc. [74],... [Pg.516]

Vibrational spectroscopy is an important tool for the characterization of various chemical species. Valuable information regarding molecular structures as well as intra- and intermolecular forces can be extracted from vibrational spectral data. Recent advances, such as the introduction of laser sources to Raman spectroscopy, the commercial availability of Fourier transform infrared spectrometers, and the continuing development and application of the matrix-isolation technique to a variety of chemical systems, have greatly enhanced the utility of vibrational spectroscopy to chemists. [Pg.231]

Surface analytical techniques. A variety of spectroscopic methods have been used to characterize the nature of adsorbed species at the solid-water interface in natural and experimental systems (Brown et al, 1999). Surface spectroscopy techniques such as extended X-ray absorption fine structure spectroscopy (EXAFS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) have been used to characterize complexes of fission products, thorium, uranium, plutonium, and uranium sorbed onto silicates, goethite, clays, and microbes (Chisholm-Brause et al, 1992, 1994 Dent et al, 1992 Combes et al, 1992 Bargar et al, 2000 Brown and Sturchio, 2002). A recent overview of the theory and applications of synchrotron radiation to the analysis of the surfaces of soils, amorphous materials, rocks, and organic matter in low-temperature geochemistry and environmental science can be found in Fenter et al (2002). [Pg.4760]

This chapter covers the applications of Fourier transform infrared (FTIR) and Raman spectroscopy to the characterization of water-soluble polymers. The structural analysis of poly(oxyethylene), poly ethylene glycol), poly methacrylic acid), and poly acrylic acid), and the interactions of selected polymers with solvents and surfactants are presented. Structural features of these compounds in the crystalline and melt states are compared with their structural features upon dissolution in aqueous solvents. Special emphasis is given to the recent studies of the interactions between water-soluble polymers or copolymers and solvents or surfactants. New experimental approaches and the sensitivities of both FTIR and Raman spectroscopy to monitor such interactions are presented. [Pg.295]

Previous mid-IR spectroscopic studies of polymer transitions, with the exception of Enns et al. (42), have used conventional dispersive instruments. One narrow range of the IR spectrum was observed by slowly scanning the frequency as the temperature was varied. Until recently this has been the optimal experimental instrumentation. However, with the advent of the fast Fourier transform algorithm, a new dimension has been added in the form of Fourier transform infrared (FTIR) spectroscopy. Application of this instrumentation to polymer systems has been the subject of recent reviews (58,59). Two texts offer a more in-depth survey of this technique in relation to conventional dispersive spectroscopy (60,61). [Pg.105]

Infrared spectroscopy is probably the most widespread analytical spectroscopic technique for identification and characterization of organic compounds. Because of this identification capability infrared spectroscopy is desirable as a detection technique for chromatographic separations. With the advent of Fourier transform infrared spectroscopy/ the speed and sensitivity of infrared detection is greatly enhanced making such applications feasible. FT-IR detection has been widely accepted as a detector for gas chromatography (GC/FT-IR) (1) and has been applied with limited success to liquid chromatography (LC/FT-IR) (2)/ and more recently to supercritical fluid chromatography (SFC/FT-IR) (3). The recent review articles cited here provide excellent introduction and references to current state-of-the-art in these areas. [Pg.229]

This chapter will cover the basic aspects of Fourier Transform Infrared Spectrometry as well as explore some recent applications of the technique. More in-depth treatments of the subject may be found elsewhere.l 2... [Pg.387]

This method was in fact carried out around two decades ago [30, 31]. However, it was applied only in the fermentation of pure microbial cultures. In a recent report by Acros-Hernandez and coworkers [32], infrared spectroscopy was applied to quantify the PHA produced in microbial mixed cultures. Around 122 spectra from a wide range of production systems were collected and used for calibrating the partial least squares (PLS) model, which relates the spectra with the PHA content (0.03-0.58 w/w) and 3-hydroxyvalerate monomer (0-63 mol%). The calibration models were evaluated by the correlation between the predicted and measured PHA content (R ), root mean square error of calibration, root mean square error of cross validation and root mean square error of prediction (RMSEP). The results revealed that the robust PLS model, when coupled with the Fourier-Transform infrared spectrum, was found to be applicable to predict the PHA content in microbial mixed cultures, with a low RMSEP of 0.023 w/w. This is considered to be a reliable method and robust enough for use in the PHA biosynthesis process using mixed microbial cultures, which is far more complex. [Pg.104]

D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz frequency sensing and imaging A time of reckoning future applications. Proceedings of the IEEE 93 1722-1743, 2005 M.C. Martin, U. Schade, P. Lerch, and P. Dumas, Recent applications and current trends in analytical chemistry using synchrotron-based Fourier transform infrared microspectroscopy. Trends in Analpical Chemistry... [Pg.133]


See other pages where Fourier transform infrared recent applications is mentioned: [Pg.520]    [Pg.134]    [Pg.355]    [Pg.167]    [Pg.531]    [Pg.17]    [Pg.1153]    [Pg.210]    [Pg.245]    [Pg.28]    [Pg.124]    [Pg.146]    [Pg.552]    [Pg.12]    [Pg.403]    [Pg.333]    [Pg.203]    [Pg.23]    [Pg.2117]    [Pg.26]    [Pg.1]    [Pg.55]    [Pg.6]    [Pg.818]    [Pg.184]    [Pg.176]    [Pg.262]    [Pg.65]    [Pg.9]    [Pg.82]    [Pg.3328]    [Pg.64]    [Pg.369]    [Pg.469]    [Pg.587]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Fourier Transform-infrared Applications

Fourier transform applications

Fourier transform infrared

Infrared applications

Recent Applications

© 2024 chempedia.info