Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorinated compounds. See

Metal oxychlorides are obtained by heating oxides with Cl (LaOCl from La Oj). Huorination is generally carried out by using elemental fluorine, HF or other fluorine compounds (see Section 14.3 for details). There are examples where oxides are reacted with a fluoride such as BaF to attain partial fluorination. Sulfidation is generally carried out by heating the metal and sulfur together in a sealed tube (see Section 14.2). Oxides can be sulfided by heating them in a stream of H S or CS. ... [Pg.11]

Similar to the application discussed above, the production of heat can be used in a more complex design to generate mechanical energy in the so-called stored chemical energy propulsion systems (SCEPS). SCEPS are typically used for underwater propulsion of torpedoes (see Eigure 14.4b) and use the reaction between molten hthium and any gaseous fluorine compound (see Eigure 14.4a) such as SF [18] or fluorocarbons such as Freon [19]. [Pg.240]

The most important of the halogenated derivatives of acetic acid is chloroacetic acid. Fluorine, chlorine, bromine, and iodine derivatives are all known, as are mixed halogenated acids. For a discussion of the fluorine derivatives see Fluorine compounds, organic. [Pg.87]

Chloroacetate esters are usually made by removing water from a mixture of chloroacetic acid and the corresponding alcohol. Reaction of alcohol with chloroacetyl chloride is an anhydrous process which Hberates HCl. Chloroacetic acid will react with olefins in the presence of a catalyst to yield chloroacetate esters. Dichloroacetic and trichloroacetic acid esters are also known. These esters are usehil in synthesis. They are more reactive than the parent acids. Ethyl chloroacetate can be converted to sodium fluoroacetate by reaction with potassium fluoride (see Fluorine compounds, organic). Both methyl and ethyl chloroacetate are used as agricultural and pharmaceutical intermediates, specialty solvents, flavors, and fragrances. Methyl chloroacetate and P ionone undergo a Dar2ens reaction to form an intermediate in the synthesis of Vitamin A. Reaction of methyl chloroacetate with ammonia produces chloroacetamide [79-07-2] C2H ClNO (53). [Pg.90]

Vinyl Fluoride. Vinyl fluoride [75-02-5] C2H2F, the monomer for poly(vinyl fluoride), is manufactured by addition of hydrogen fluoride to acetylene (see Fluorine COMPOUNDS, ORGANIC, POLY(viNYL FLUORIDE)). [Pg.102]

Fluorine, which does not occur freely in nature except for trace amounts in radioactive materials, is widely found in combination with other elements, accounting for ca 0.065 wt % of the earth s cmst (4). The most important natural source of fluorine for industrial purposes is the mineral fluorspar [14542-23-5] CaF2, which contains about 49% fluorine. Detailed annual reports regarding the worldwide production and reserves of this mineral are available (5). A more complete discussion of the various sources of fluorine-containing minerals is given elsewhere (see Fluorine compounds, inorganic). [Pg.122]

The reactivity of fluorine compounds varies from extremely stable, eg, compounds such as sulfur hexafluoride [2551-62 ] nitrogen trifluoride [7783-54-2] and the perfluorocarbons (see Fluorine compounds, organic) to extremely reactive, eg, the halogen fluorides. Another unique property of nonionic metal fluorides is great volatiUty. Volatile compounds such as tungsten hexafluoride [7783-82-6] molybdenum hexafluoride [7783-77-9] ... [Pg.123]

Nonmeta.ls, Sulfur reacts with fluorine to yield the remarkably stable sulfur hexafluoride, SF. Operating conditions must be controlled because a mixture of the lower fluorides such as disulfur difluoride [13709-35-8] 2 2 disulfur decafluoride [5714-22-7] 2 10 sulfur tetrafluoride [7783-60-0] SF4, may also be formed. When this reaction is carried out between 310 and 340°C, SF is primarily obtained and essentially no SF and only trace amounts of lower fluorides. Below 300°C, and preferably at ca 275°C, SF is the primary product. At 450—500°C, a mixture comprising ca 50% SF and the lower sulfur fluorides is formed (see Fluorine compounds, inorganic-sulfur). [Pg.124]

Sihcon and boron bum ia fluorine forming siUcon tetrafluoride [7783-61-17, SiF, and boron trifluoride [7637-07-2] respectively. Selenium and tellurium form hexafluorides, whereas phosphoms forms tri- or pentafluorides. Fluorine reacts with the other halogens to form eight interhalogen compounds (see Fluorine compounds, inorganic-halogens). [Pg.124]

Fluorine reacts with the halogens and antimony to produce several compounds of commercial importance antimony pentafluoride [7783-70-2J, bromine trifluoride [7787-71 chlorine trifluoride [7790-91 -2J, and iodine pentafluoride [7783-66-6J. Chlorine trifluoride is used in the processing of UF (see Uraniumand uranium compounds). Bromine trifluoride is used in chemical cutting by the oil well industry (see Petroleum). Antimony and iodine pentafluorides are used as selective fluorinating agents to produce fluorochemical intermediates (see Fluorine compounds, inorganic). [Pg.131]

CoF is used for the replacement of hydrogen with fluorine in halocarbons (5) for fluorination of xylylalkanes, used in vapor-phase soldering fluxes (6) formation of dibutyl decalins (7) fluorination of alkynes (8) synthesis of unsaturated or partially fluorinated compounds (9—11) and conversion of aromatic compounds to perfluorocycHc compounds (see Fluorine compounds, organic). CoF rarely causes polymerization of hydrocarbons. CoF is also used for the conversion of metal oxides to higher valency metal fluorides, eg, in the assay of uranium ore (12). It is also used in the manufacture of nitrogen fluoride, NF, from ammonia (13). [Pg.178]

Most of the acid-grade spar used for HF production ia the United States is imported. More than two-thkds of the fluorspar consumed ia the United States goes iato production of HF nearly 30% is consumed as a flux ia steelmaking and the remainder is consumed ia glass manufacture, enamels, welding rod coatings, and other end uses or products (see Fluorine compounds, inorganic-calcium). [Pg.199]

The fluorination reaction is best described as a radical-chain process involving fluorine atoms (19) and hydrogen abstraction as the initiation step. If the molecule contains unsaturation, addition of fluorine also takes place (17). Gomplete fluorination of complex molecules can be conducted using this method (see Fluorine compounds, organic-direct fluorination). [Pg.268]

Direct Fluorination. This is a more recently developed method for the synthesis of perfluorinated compounds. In this process, fluorine gas is passed through a solution or suspension of the reactant in a nonreactive solvent such as trichlorotrifluoroethane (CFC-113). Sodium fluoride may also be present in the reaction medium to remove the coproduct hydrogen fluoride. There has been enormous interest in this area since the early 1980s resulting in numerous journal pubHcations and patents (7—9) (see Fluorine compounds, organic-direct fluorination). Direct fluorination is especially useful for the preparation of perfluoroethers. [Pg.298]

These ethers readily copolymerize with tetrafluoroethylene and other fluoroalkenes to commercially significant plastics, elastomers, and ion-exchange resins such as Teflon PFA, Kalrez, andNafton (see Fluorine compounds organic-tethafluoroethylene-perfluorovinylETHERcopolya rs EuASTOPffiRS, SYNTHETIC-FLUOROCARBONELASTOTffiRS lONIC POLYTffiRS). [Pg.304]

Preparation. The preparation, properties, and uses of tetraduoroethylene have been described (see Fluorine compounds, organic-polytethafluoroethylene). ... [Pg.358]

The equimolar copolymer of ethylene and tetrafluoroethylene is isomeric with poly(vinyhdene fluoride) but has a higher melting point (16,17) and a lower dielectric loss (18,19) (see Fluorine compounds, organic-poly(VINYLIDENE fluoride)). A copolymer with the degree of alternation of about 0.88 was used to study the stmcture (20). Its unit cell was determined by x-ray diffraction. Despite irregularities in the chain stmcture and low crystallinity, a unit cell and stmcture was derived that gave a calculated crystalline density of 1.9 g/cm. The unit cell is befleved to be orthorhombic or monoclinic (a = 0.96 nm, b = 0.925 nm, c = 0.50 nm 7 = 96%. [Pg.365]

Preparation. Thermal elimination of HCl from l-chloro-l,l-difluoroethane (HCFC-142b) [75-68-3] is the principal industrial route to VDF covered by numerous patents (8—19). Dehydrohalogenation of l-bromo-l,l-difluoroethane (20), or 1,1,1-trifluoroethane (HFC-143a) (21—25), or dehalogenation of l,2-dichloro-l,l-difluoroethane (26—28) are investigated alternative routes (see Fluorine compounds, organic-fluorinated aliphatic compounds). [Pg.385]

CFG = chlorofluorocarbon HCFC = hydrochlorofluorocarbon see Fluorine compounds,organic-aliphatic. [Pg.414]

See Airpollution Atmospheric models Fluorine compounds, organic-fluorinated aliphatic compounds Ozone. [Pg.390]

Hafnium tetrafluoride [13709-52-9] is one component in the cladding layer of a proposed zirconium fluoride glass optical waveguide fiber composition which is expected to have a lower intrinsic light absorption than fused quart2 optical fiber (see Glass Fiber optics Fluorine compounds, inorganic-zirconium). [Pg.444]

HalogenatedFluids. Chlorocarbons, fluorocarbons, or combinations of the two are used to form lubricating fluids (see Chlorocarbons and CHLOROHYDROCARBONS Fluorine COMPOUNDS, ORGANIC). Generally, these fluids are chemically inert, essentially nonflammable, and often show excellent resistance to solvents. Some have outstanding thermal and oxidation stability, because they are completely unreactive even in Hquid oxygen, and extremely low volatility. [Pg.265]


See other pages where Fluorinated compounds. See is mentioned: [Pg.138]    [Pg.371]    [Pg.98]    [Pg.138]    [Pg.371]    [Pg.98]    [Pg.314]    [Pg.960]    [Pg.121]    [Pg.344]    [Pg.337]    [Pg.377]    [Pg.466]    [Pg.124]    [Pg.131]    [Pg.137]    [Pg.137]    [Pg.178]    [Pg.190]    [Pg.199]    [Pg.230]    [Pg.271]    [Pg.273]    [Pg.274]    [Pg.379]    [Pg.403]    [Pg.403]    [Pg.403]    [Pg.433]    [Pg.278]    [Pg.11]   


SEARCH



Fluorination compounds

Fluorine compounds

© 2024 chempedia.info