Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorinated fluorinated hydrocarbons

Fluorine- chlorine- hydrocarbons (CFCs) 17 5 Aerosol/propellants, cooling, cleaning, fire suppressants, foaming agents... [Pg.33]

The compressed gases used today include nitrogen, carbon dioxide, and nitrous oxide. The liquefied gases that once were used include the Freons and Gentrons , which were fluorinated chlorinated hydrocarbons. Today most of these products have been replaced by chlorinated hydrocarbons, which are predominantly inert. [Pg.29]

Compared to TCE, fluorinated chlorinated hydrocarbons (CFC) offer benefits to dry cleaning because of their lower boiling points and their more gentle action to dyestuffs and fabrics. So since 1960 these solvents have had some importance in North America, Westem Europe, and the F ar East. They were banned because of their influence on the ozone layer in the stratosphere by the UNESCO s Montreal Protocol in 1985. [Pg.883]

Problem-induced TA studies are directed toward acute or foreseeable problems in society, for example, the CO2 enrichment of the atmosphere or ozone layer destruction in the stratosphere by fluorine-chlorine hydrocarbons and the resulting consequences. Here the research leads to consideration of so-called macroalternatives, which lead away from the original problem-solution. [Pg.406]

Many of the reactions of halogens can be considered as either oxidation or displacement reactions the redox potentials (Table 11.2) give a clear indication of their relative oxidising power in aqueous solution. Fluorine, chlorine and bromine have the ability to displace hydrogen from hydrocarbons, but in addition each halogen is able to displace other elements which are less electronegative than itself. Thus fluorine can displace all the other halogens from both ionic and covalent compounds, for example... [Pg.325]

Chlorine Ammonia, acetylene, alcohols, alkanes, benzene, butadiene, carbon disulflde, dibutyl phthalate, ethers, fluorine, glycerol, hydrocarbons, hydrogen, sodium carbide, flnely divided metals, metal acetylides and carbides, nitrogen compounds, nonmetals, nonmetal hydrides, phosphorus compounds, polychlorobi-phenyl, silicones, steel, sulfldes, synthetic rubber, turpentine... [Pg.1207]

Nitric oxide Aluminum, BaO, boron, carbon disulflde, chromium, many chlorinated hydrocarbons, fluorine, hydrocarbons, ozone, phosphine, phosphorus, hydrazine, acetic anhydride, ammonia, chloroform, Fe, K, Mg, Mn, Na, sulfur... [Pg.1210]

Uranium hexafluoride [7783-81-5], UF, is an extremely corrosive, colorless, crystalline soHd, which sublimes with ease at room temperature and atmospheric pressure. The complex can be obtained by multiple routes, ie, fluorination of UF [10049-14-6] with F2, oxidation of UF with O2, or fluorination of UO [1344-58-7] by F2. The hexafluoride is monomeric in nature having an octahedral geometry. UF is soluble in H2O, CCl and other chlorinated hydrocarbons, is insoluble in CS2, and decomposes in alcohols and ethers. The importance of UF in isotopic enrichment and the subsequent apphcations of uranium metal cannot be overstated. The U.S. government has approximately 500,000 t of UF stockpiled for enrichment or quick conversion into nuclear weapons had the need arisen (57). With the change in pohtical tides and the downsizing of the nation s nuclear arsenal, debates over releasing the stockpiles for use in the production of fuel for civiUan nuclear reactors continue. [Pg.332]

Fluorinated rubbers, copolymers of hexafluoropropylene and vinylidene-fluorides, have excellent resistance to oils, fuels and lubricants at temperatures up to 200°C. They have better resistance to aliphatic, aromatic and chlorinated hydrocarbons and most mineral acids than other rubbers, but their high cost restricts their engineering applications. Cheremisinoff et al. [54] provide extensive physical and mechanical properties data on engineering plastics. A glossary of terms concerned with fabrication and properties of plastics is given in the last section of this chapter. [Pg.123]

Mg ribbon and fine Mg shavings can be ignited at air temps of about 950°F (Ref 26). Oxides of Be, Cd, Hg, Mo and Zn can react explosively with Mg when heated (Ref 8). Mg reacts with incandescence when heated with the cyanides of Cd, Co, Cu,Pb, Ni or Zn or with Ca carbide (Ref 9). It is spontaneously flam-mable when exposed to moist chlorine (Ref 10), and on contact with chloroform, methyl chloride (or mixts of both), an expl occurs (Ref 4). Mg also reacts violently with chlorinated hydrocarbons, nitrogen tetroxide and A1 chloride (Ref 14). The reduction of heated cupric oxide by admixed Mg is accompanied by incandescence and an expin (Ref 7).Mg exposed to moist fluorine is spontaneously flammable (Ref 11). When a mixt of Mg and Ca carbonate is heated in a current of hydrogen, a violent ex pin occurs (Ref 12). When Mo trioxide is heated with molten Mg, a violent detonation occurs (Ref 1). Liq oxygen (LOX) gives a detonable mixt when... [Pg.23]

Hydrocarbons (benzene, butane, Fluorine, chlorine, bromine, chromic acid, peroxide... [Pg.158]

Chlorine dioxide Copper Fluorine Hydrazine Hydrocarbons (benzene, butane, propane, gasoline, turpentine, etc) Hydrocyanic acid Hydrofluoric acid, anhydrous (hydrogen fluoride) Hydrogen peroxide Ammonia, methane, phosphine or hydrogen sulphide Acetylene, hydrogen peroxide Isolate from everything Hydrogen peroxide, nitric acid, or any other oxidant Fluorine, chlorine, bromine, chromic acid, peroxide Nitric acid, alkalis Ammonia, aqueous or anhydrous Copper, chromium, iron, most metals or their salts, any flammable liquid, combustible materials, aniline, nitromethane... [Pg.165]

See Bromine pentafluoride Hydrogen-containing materials Chlorine Hydrocarbons Chlorine trifluoride Methane Fluorine Hydrocarbons Iodine heptafluoride Carbon, etc. [Pg.191]

Halogen (X = fluorine, chlorine, bromine or iodine) replaces -H on hydrocarbon group... [Pg.2]

Thermodynamic properties for explosion calculations are presented for major organic chemical compounds. The thermodynamic properties include enthalpy of formation, Gibbs free energy of formation, internal energy of formation and Helmholtz free energy of formation. The major chemicals include hydrocarbon, oxygen, nitrogen, sulfur, fluorine, chlorine, bromine, iodine and other compound types. [Pg.174]

Halogenated extinguishing agents are hydrocarbons where one or more hydrogen atom is replaced by fluorine, chlorine, bromine, or iodine atoms. The substituted atom is not only rendered nonflammable, but it acts as a very efficient... [Pg.137]

Elemental fluorine, commonly diluted with an inert gas (argon, neon, nitrogen), can be used in a variety of solvents. Chlorinated hydrocarbons... [Pg.299]

Conversion in the liquid phase has the disadvantage that the carbon tetrachloride formed during the disproportionation of trichlorofluoromethane forms a complex compound with the aluminum trichloride possessing no catalytic effect, so that only a relatively small amount of trichlorofluoromethane can be converted with a predetermined amount of aluminum trichloride. The continuous gas-phase method in a tubular reactor is more practicable the temperature at which it takes place must be high enough to prevent any products from condensing on the catalyst. It is also possible to perform the disproportionation process continuously in the liquid phase in a tubular reactor, under pressure and at an increased temperature. In this case aluminum trichloride must first be activated by pretreatment (partial fluorination), since the partial fluorination of aluminum trichloride greatly reduces the tendency for complex compounds to form with the chlorinated hydrocarbon when this itself has formed. [Pg.282]

NOXIOUS CAS. Any natural or by-product gas or vapor that has specific toxic effects on humans or animals (military poison gases are not included in this group). Examples of noxious gases are ammonia, carbon monoxide, nitrogen oxides, hydrogen sulfide, sulfur dioxide, ozone, fluorine, and vapors evolved by benzene, carbon tetrachloride, and a number of chlorinated hydrocarbons. Oases that act as simple asphyxiants are not classified as noxious. See also Pollution (Air). [Pg.1095]

The addition of a gas to a reaction mixture (commonly the hydrogen halides, fluorine, chlorine, phosgene, boron trifluoride, carbon dioxide, ammonia, gaseous unsaturated hydrocarbons, ethylene oxide) requires the provision of safety precautions which may not be immediately apparent. Some of these gases may be generated in situ (e.g. diborane in hydroboration reactions), some may be commercially available in cylinders, and some may be generated by chemical or other means (e.g. carbon dioxide, ozone). An individual description of the convenient sources of these gases will be found under Section 4.2. [Pg.83]

The positron-trap technique has been used to measure the annihilation rate of positrons interacting with a wide variety of molecules. The species investigated by Iwata et al. (1995) include many hydrocarbons, substituted (e.g. fluorinated and chlorinated) hydrocarbons and aromatics as mentioned in section 6.1, large values of (Zeff) (in excess of 106) were found for some molecules. Several distinct trends are exhibited in the data of Iwata et al. (1995). Though much of the detailed physics involved in the annihilation process on these large molecules is still unclear, the model of Laricchia and Wilkin (1997), described in section 6.1, may offer a qualitative explanation of the observations. [Pg.288]


See other pages where Chlorinated fluorinated hydrocarbons is mentioned: [Pg.253]    [Pg.303]    [Pg.253]    [Pg.303]    [Pg.179]    [Pg.346]    [Pg.95]    [Pg.1541]    [Pg.195]    [Pg.195]    [Pg.321]    [Pg.661]    [Pg.823]    [Pg.50]    [Pg.346]    [Pg.173]    [Pg.173]    [Pg.164]    [Pg.164]    [Pg.16]    [Pg.48]    [Pg.396]    [Pg.235]   


SEARCH



Fluorinated hydrocarbons

Hydrocarbons fluorination

Hydrocarbons, chlorination

© 2024 chempedia.info