Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluidized bed reactors, reaction

Fig. 7-12. Initial, nonlinear dissolution of albite in pH 5.1 HCl in a continuous flow fluidized bed reactor. Reaction product concentrations were maintained below saturation for all secondary phases (data from Chou and Wollast, 1984). Fig. 7-12. Initial, nonlinear dissolution of albite in pH 5.1 HCl in a continuous flow fluidized bed reactor. Reaction product concentrations were maintained below saturation for all secondary phases (data from Chou and Wollast, 1984).
The UF4-fluorine reaction is carried out in large-diameter fluidized-bed reactors reaction is very fest, and the product is removed continuously as a gas. It is necessary to control temperature and pressure conditions in order to confine the reaction to UF4 + F2 UF0 and to prevent the formation of less volatile intermediate fluorides, UF5, U2F9, and U4F1Y. [Pg.343]

Figure 19 The coke content in catalyst as function of time on stream in microsale fluidized bed reactor. Reaction temperature 450 °C, WHSV=1.5 h ... Figure 19 The coke content in catalyst as function of time on stream in microsale fluidized bed reactor. Reaction temperature 450 °C, WHSV=1.5 h ...
By contrast, if the reactor is continuous well-mixed, then the reactor is isothermal. This behavior is typical of stirred tanks used for liquid-phase reactions or fluidized-bed reactors used for gas-phase reactions. The mixing causes the temperature in the reactor to be effectively uniform. [Pg.327]

Another hydrogenation process utilizes internally generated hydrogen for hydroconversion in a single-stage, noncatalytic, fluidized-bed reactor (41). Biomass is converted in the reactor, which is operated at about 2.1 kPa, 800°C, and residence times of a few minutes with steam-oxygen injection. About 95% carbon conversion is anticipated to produce a medium heat value (MHV) gas which is subjected to the shift reaction, scmbbing, and methanation to form SNG. The cold gas thermal efficiencies are estimated to be about 60%. [Pg.25]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

The chlorination is mostly carried out in fluidized-bed reactors. Whereas the reaction is slightly exothermic, the heat generated during the reaction is not sufficient to maintain it. Thus, a small amount of oxygen is added to the mixture to react with the coke and to create the necessary amount of heat. To prevent any formation of HCl, all reactants entering the reactor must be completely dry. At the bottom of the chlorination furnace, chlorides of metal impurities present in the titanium source, such as magnesium, calcium, and zircon, accumulate. [Pg.9]

This reaction takes place in a fluidized-bed reactor or a specially made furnace called a Mannheim furnace. This method was last used in the United States in the 1980s. In another process, SO2, O2, and H2O react with NaCl. [Pg.205]

In oxychlorination, ethylene reacts with dry HCl and either air or pure oxygen to produce EDC and water. Various commercial oxychlorination processes differ from one another to some extent because they were developed independentiy by several different vinyl chloride producers (78,83), but in each case the reaction is carried out in the vapor phase in either a fixed- or fluidized-bed reactor containing a modified Deacon catalyst. Unlike the Deacon process for chlorine production, oxychlorination of ethylene occurs readily at temperatures weU below those requited for HCl oxidation. [Pg.417]

Oxychlorination of Ethylene or Dichloroethane. Ethylene or dichloroethane can be chlorinated to a mixture of tetrachoroethylene and trichloroethylene in the presence of oxygen and catalysts. The reaction is carried out in a fluidized-bed reactor at 425°C and 138—207 kPa (20—30 psi). The most common catalysts ate mixtures of potassium and cupric chlorides. Conversion to chlotocatbons ranges from 85—90%, with 10—15% lost as carbon monoxide and carbon dioxide (24). Temperature control is critical. Below 425°C, tetrachloroethane becomes the dominant product, 57.3 wt % of cmde product at 330°C (30). Above 480°C, excessive burning and decomposition reactions occur. Product ratios can be controlled but less readily than in the chlorination process. Reaction vessels must be constmcted of corrosion-resistant alloys. [Pg.24]

The principal advance ia technology for SASOL I relative to the German Fischer-Tropsch plants was the development of a fluidized-bed reactor/regenerator system designed by M. W. Kellogg for the synthesis reaction. The reactor consists of an entrained-flow reactor ia series with a fluidized-bed regenerator (Fig. 14). Each fluidized-bed reactor processes 80,000 m /h of feed at a temperature of 320 to 330°C and 2.2 MPa (22 atm), and produces approximately 300 m (2000 barrels) per day of Hquid hydrocarbon product with a catalyst circulation rate of over 6000 t/h (49). [Pg.291]

Three-phase fluidized bed reactors are used for the treatment of heavy petroleum fractions at 350 to 600°C (662 to 1,112°F) and 200 atm (2,940 psi). A biological treatment process (Dorr-Oliver Hy-Flo) employs a vertical column filled with sand on which bacderial growth takes place while waste liquid and air are charged. A large interfacial area for reaction is provided, about 33 cmVcm (84 inVirr), so that an 85 to 90 percent BOD removal in 15 min is claimed compared with 6 to 8 h in conventional units. [Pg.2120]

The Fischer-Tropsch reaction is highly exothermic. Therefore, adequate heat removal is critical. High temperatures residt in high yields of methane, as well as coking and sintering of the catalyst. Three types of reac tors (tubular fixed bed, fluidized bed, and slurry) provide good temperature control, and all three types are being used for synthesis gas conversion. The first plants used tubular or plate-type fixed-bed reactors. Later, SASOL, in South Africa, used fluidized-bed reactors, and most recently, slurry reactors have come into use. [Pg.2377]

Fluidized bed reactors do not have to perform poorly, but special conditions must be maintained for good performance. A basic process for silicone manufacturing, which is not practiced much anymore, is the reaction of silicon metal with methyl chloride to form dimethyl dichlorosilane ... [Pg.182]

A salient feature of the fluidized bed reactor is that it operates at nearly constant temperature and is, therefore, easy to control. Also, there is no opportunity for hot spots (a condition where a small increase in the wall temperature causes the temperature in a certain region of the reactor to increase rapidly, resulting in uncontrollable reactions) to develop as in the case of the fixed bed reactor. However, the fluidized bed is not as flexible as the fixed bed in adding or removing heat. The loss of catalyst due to carryover with the gas stream from the reactor and regenerator may cause problems. In this case, particle attrition reduces their size to such an extent where they are no longer fluidized, but instead flow with the gas stream. If this occurs, cyclone separators placed in the effluent lines from the reactor and the regenerator can recover the fine particles. These cyclones remove the majority of the entrained equilibrium size catalyst particles and smaller fines. The catalyst fines are attrition products caused by... [Pg.234]

In the fluid coking process, part of the coke produced is used to provide the process heat. Cracking reactions occur inside the heater and the fluidized-bed reactor. The fluid coke is partially formed in the heater. Hot coke slurry from the heater is recycled to the fluid reactor to provide the heat required for the cracking reactions. Fluid coke is formed by spraying the hot feed on the already-formed coke particles. Reactor temperature is about 520°C, and the conversion into coke is immediate, with... [Pg.58]

For the manufacturing of sulfosuccinic acid esters, which belong to a special class of surfactants, maleic acid anhydride is needed. Maleic acid anhydride is an important intermediate chemical of the chemical industry. Its worldwide output amounts to about 800,000 tons (1990) [64]. Maleic acid is produced by catalytic vapor phase oxidation process of benzene or n-C4 hydrocarbons in fixed bed or fluidized bed reactors according the following reaction equations. The heat of reaction of the exothermic oxidation processes is very high. [Pg.33]

We studied the polyamidation of nylon 4,6, and varied the reaction time, reaction temperature, partical size, starting molecular weight, and type of reactor gas. At the same time we looked at the molecular weight broadening and the degradation with colour formation. In order to have good heat and mass transfer the reactions were mainly conducted on fine powder in a fluidized bed reactor and with dry nitrogen as carrier gas. [Pg.139]

The SPP in a fluidized bed reactor with dry nitrogen as carrier gas allows us to study the reaction under anhydrous conditions. However under these conditions the products were found to be coloured (table IV). [Pg.146]

The SPP in a fluidized bed reactor with super heated steam as carrier gas gave somewhat lower molecular weight products but the samples showed hardly any UV absorption. Steam in the carrier gas reduces the overall polymerization rates, but suppresses the reactions which lead to coloured products (25). [Pg.146]

Describe the advantages and disadvantages of the following reactor types with reference to heat and mass transfer. For each reactor discuss one reaction for which it may be appropriate to use that reactor, (a) fluidized bed reactor, (b) A continuous counter-current flow reactor, (c) A monolith reactor. [Pg.258]


See other pages where Fluidized bed reactors, reaction is mentioned: [Pg.147]    [Pg.147]    [Pg.147]    [Pg.147]    [Pg.48]    [Pg.60]    [Pg.83]    [Pg.83]    [Pg.140]    [Pg.22]    [Pg.86]    [Pg.147]    [Pg.456]    [Pg.169]    [Pg.416]    [Pg.519]    [Pg.43]    [Pg.418]    [Pg.418]    [Pg.170]    [Pg.466]    [Pg.277]    [Pg.2070]    [Pg.2361]    [Pg.476]    [Pg.483]    [Pg.86]    [Pg.414]    [Pg.307]    [Pg.93]   


SEARCH



Fluidized reactors

Reactors reaction

© 2024 chempedia.info