Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow reactor data

In integral analysis concentration-versus-time (or equivalently concentration-versus-distance from the inlet of the integral flow reactor) data are known. Kinetic expressions to be determined are incorporated into the differential material balance equations ... [Pg.308]

Data of chemical composition 106 Pressure changes 145 Variables related to composition 164 Half iife and initial rate data 177 Temperature variation. Activation energy Homogeneous catalysis 202 Enzyme and solid catalysis 210 Flow reactor data 222 CSTR data 231 Complex reactions 238... [Pg.104]

Figure 27.9 Effect of inhibition on mixed flow reactor data. Figure 27.9 Effect of inhibition on mixed flow reactor data.
Figure 30.7 Finding the order of product poisoning and the rate constant of Eq. 12 from mixed flow reactor data. Figure 30.7 Finding the order of product poisoning and the rate constant of Eq. 12 from mixed flow reactor data.
An interpretation of batch or flow reactor data is used to fit an empirical rate expression. For example, in a simple batch reactor, concentration is measured as a function of time. Once the experimental data are available, two methods can be used to fit a rate expression. [Pg.470]

Cutler AH, Antal MJ Jr, Jones M Jr. A critical evaluation of plug-flow idealization of tubular-flow reactor data. Ind Eng Chem Res 1988 27 691-697. [Pg.166]

DETERMINATION OF REACTION-RATE EXPRESSIONS FROM PLUG-FLOW-REACTOR DATA 5.24... [Pg.142]

Either the polynomial method or the chord method can be used to find an initial rate from plug flow reactor data. The chord method is especially convenient in this case because the difference between the concentration in the effluent and feed streams (Am, molal) divided by the transit time for a slug of solution is a chord. The transit time is the reactor volume (V, L) times the porosity (p, no units) divided by the flow rate Q, L/sec). [Pg.70]

Ideally, kinetic information should be presented without the imposition of a kinetic expression or reactor characteristics, which is defined as a model-free analysis. When plug flow reactor data is analyzed using the differential method (section Differential Analysis of Experimental Flow Data ), the rate is calculated directly from the experimental data without assumption of a kinetic model. Temkin and Denbigh applied a... [Pg.243]

Sinfelt and coworkers studied the kinetics of this reaction over a Pt/Al203 catalyst in a differential plug-flow reactor. Data showing the rate of reaction ( y) as a function of the partial pressure of M (pm) at 315 °C are summarized in the following table. [Pg.190]

Batch reactors often are used to develop continuous processes because of their suitabiUty and convenient use in laboratory experimentation. Industrial practice generally favors processing continuously rather than in single batches, because overall investment and operating costs usually are less. Data obtained in batch reactors, except for very rapid reactions, can be well defined and used to predict performance of larger scale, continuous-flow reactors. Almost all batch reactors are well stirred thus, ideally, compositions are uniform throughout and residence times of all contained reactants are constant. [Pg.505]

Experimental data taken from the chlorination of toluene in a continuous stirred tank flow reactor at 111°C and irradiated with light of 500 nm wavelength yield a product distribution shown in Table 1 (1). [Pg.58]

Flow Reactors Fast reactions and those in the gas phase are generally done in tubular flow reaclors, just as they are often done on the commercial scale. Some heterogeneous reactors are shown in Fig. 23-29 the item in Fig. 23-29g is suited to liquid/liquid as well as gas/liquid. Stirred tanks, bubble and packed towers, and other commercial types are also used. The operadon of such units can sometimes be predicted from independent data of chemical and mass transfer rates, correlations of interfacial areas, droplet sizes, and other data. [Pg.708]

More up-to-date data of this process are employed in a study by Rase (Fixed Bed Reactor Design and Diagnostics, Butterworths, 1990, pp. 275-286). In order to keep the pressure drop low, radial flow reactors are used, two units in series with reheating between them. Simultaneous formation of benzene, toluene, and minor products is taken into account. An economic comparison is made of two different catalysts under a variety of operating conditions. Some of the computer printouts are shown there. [Pg.2081]

Both kinetic and equilibrium experimental methods are used to characterize and compare adsorption of aqueous pollutants in active carbons. In the simplest kinetic method, the uptake of a pollutant from a static, isothermal solution is measured as a function of time. This approach may also yield equilibrium adsorption data, i.e., amounts adsorbed for different solution concentrations in the limit t —> qo. A more practical kinetic method is a continuous flow reactor, as illustrated in Fig. 5. [Pg.107]

The performance data for plug versus mix reactor were obtained. The data were collected as the inverse of qx vs inverse of substrate concentration. Table E.1.1 shows the data based on obtained kinetic data. From the data plotted in Figure E.1.1, we can minimise the volume of the chemostat. A CSTR works better than a plug flow reactor for the production of biomass. Maximum qx is obtained with a substrate concentration in the leaving stream of 12g m 3. [Pg.300]

The interpretation of the above data on iodination has been questioned by Buss and Taylor217, and by Grovenstein et a/.218,219. The former workers studied the iodination of 2,4-dichlorophenol at about 25 °C using a stirred flow reactor, the advantages of which are that once a steady state has been reached there is no change in the concentration of the reactive species in the reactor with time and the rate of reaction is simply a product of extent of reaction multiplied by the reciprocal ol the contact time hence it is possible to use unbuffered solutions and low iodide ion concentrations. They found general catalysis by the base component of added phosphate buffers and the observed rate coefficients varied with [H+ ] according to... [Pg.94]

In Fig. 1, a comparison can be observed for the prediction by the honeycomb reactor model developed with the parameters directly obtained from the kinetic study over the packed-bed flow reactor [6] and from the extruded honeycomb reactor for the 10 and 100 CPSI honeycomb reactors. The model with both parameters well describes the performance of both reactors although the parameters estimated from the honeycomb reactor more closely predict the experiment data than the parameters estimated from the kinetic study over the packed-bed reactor. The model with the parameters from the packed-bed reactor predicts slightly higher conversion of NO and lower emission of NHj as the reaction temperature decreases. The discrepancy also varies with respect to the reactor space velocity. [Pg.447]

The kinetic parameters estimated by the experimental data obtained frmn the honeycomb reactor along with the packed bed flow reactor as listed in Table 1 reveal that all the kinetic parameters estimated from both reactors are similar to each other. This indicates that the honeycomb reactor model developed in the present study can directly employ intrinsic kinetic parameters estimated from the kinetic study over the packed-bed flow reactor. It will significantly reduce the efibrt for predicting the performance of monolith and estimating the parameters for the design of the commercial SCR reactor along with the reaction kinetics. [Pg.447]

Fig. 1. Prediction of the model for 10 and 100 CPSI honeycomb reactors extruded with the ViOs/sulfated Xi02 catalyst. (—, prediction with the parameters estimated from the experimental data over a packed-bed flow reactor —, prediction with the parameters estimated from the experimental data over a honeycomb reactor). Fig. 1. Prediction of the model for 10 and 100 CPSI honeycomb reactors extruded with the ViOs/sulfated Xi02 catalyst. (—, prediction with the parameters estimated from the experimental data over a packed-bed flow reactor —, prediction with the parameters estimated from the experimental data over a honeycomb reactor).
As described above, the activity of a catalyst can be measured by mounting it in a plug flow reactor and measuring its intrinsic reactivity outside equilibrium, with well-defined gas mixtures and temperatures. This makes it possible to obtain data that can be compared with micro-kinetic modeling. A common problem with such experiments materializes when the rate becomes high. Operating dose to the limit of zero conversion can be achieved by diluting the catalyst with support material. [Pg.206]

A system has been constructed which allows combined studies of reaction kinetics and catalyst surface properties. Key elements of the system are a computer-controlled pilot plant with a plug flow reactor coupled In series to a minireactor which Is connected, via a high vacuum sample transfer system, to a surface analysis Instrument equipped with XFS, AES, SAM, and SIMS. When Interesting kinetic data are observed, the reaction Is stopped and the test sample Is transferred from the mlnlreactor to the surface analysis chamber. Unique features and problem areas of this new approach will be discussed. The power of the system will be Illustrated with a study of surface chemical changes of a Cu0/Zn0/Al203 catalyst during activation and methanol synthesis. Metallic Cu was Identified by XFS as the only Cu surface site during methanol synthesis. [Pg.15]

Here X denotes lb-moles of benzene per lb-mole of pure benzene feed and x, denotes lb-moles of diphenyl per lb-mole of pure benzene feed. The parameters k, and k2 are unknown reaction rate constants whereas K, and K2 are known equilibrium constants. The data consist of measurements of Xi and x2 in a flow reactor at eight values of the reciprocal space velocity t. The feed to the reactor was pure benzene. The experimental data are given in Table 6.2 (in Chapter 6). The governing ODEs can also be written as ... [Pg.130]

Fig. 5.1.2 Non-ideal capillary flow reactor (a) propagators [13] and (b) corresponding RTDs calculated from the propagator data, (a) The propagators indicate the distribution of average velocities over each observation time (A) ranging from 50 ms to 1 s. As the observation time increases the spins exhibit a narrowing distribution of average velocities due to the motional narrowing effect of molecular diffusion across the streamlines. The dashed vertical line represents the maximum velocity that would be present in the absence of molecular... Fig. 5.1.2 Non-ideal capillary flow reactor (a) propagators [13] and (b) corresponding RTDs calculated from the propagator data, (a) The propagators indicate the distribution of average velocities over each observation time (A) ranging from 50 ms to 1 s. As the observation time increases the spins exhibit a narrowing distribution of average velocities due to the motional narrowing effect of molecular diffusion across the streamlines. The dashed vertical line represents the maximum velocity that would be present in the absence of molecular...

See other pages where Flow reactor data is mentioned: [Pg.118]    [Pg.94]    [Pg.141]    [Pg.96]    [Pg.558]    [Pg.109]    [Pg.87]    [Pg.325]    [Pg.166]    [Pg.165]    [Pg.118]    [Pg.94]    [Pg.141]    [Pg.96]    [Pg.558]    [Pg.109]    [Pg.87]    [Pg.325]    [Pg.166]    [Pg.165]    [Pg.561]    [Pg.95]    [Pg.218]    [Pg.24]    [Pg.286]    [Pg.483]    [Pg.461]    [Pg.308]    [Pg.99]    [Pg.304]    [Pg.510]   
See also in sourсe #XX -- [ Pg.99 , Pg.240 ]




SEARCH



Data flow

Plug flow reactors isothermal data, analysis

Rate constants from plug-flow reactor data

Stirred-flow reactor data analysis using

Tubular flow reactors kinetic data

© 2024 chempedia.info