Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow and weight

A key consideration in conducting polymerization is maintenance of the proper recipe or ingredient mix. In most homopolymerizations and all copolymerizations, more than a single ingredient is required in the reacting mass. For example, in some emulsion polymerizations as many as 20 different components must be fed into the reaction at controlled concentrations. [Pg.170]

For continuous systems, the flow rates of ingredients are controlled. Achievement of the desired composition requires ratio controllers in which all flow rates are tied to a single key component for feedforward control. In addition, flow rate setpoints may be remotely set in a cascade fashion from a master composition loop. [Pg.170]

In either case of weight or flow rate measurement, the major problems are [Pg.170]


The second term in brackets in equation 36 is the separative work produced per unit time, called the separative capacity of the cascade. It is a function only of the rates and concentrations of the separation task being performed, and its value can be calculated quite easily from a value balance about the cascade. The separative capacity, sometimes called the separative power, is a defined mathematical quantity. Its usefulness arises from the fact that it is directly proportional to the total flow in the cascade and, therefore, directly proportional to the amount of equipment required for the cascade, the power requirement of the cascade, and the cost of the cascade. The separative capacity can be calculated using either molar flows and mol fractions or mass flows and weight fractions. The common unit for measuring separative work is the separative work unit (SWU) which is obtained when the flows are measured in kilograms of uranium and the concentrations in weight fractions. [Pg.81]

DTAATGA analysis measures heat flow and weight changes in a material as a function of temperature in a controlled atmosphere. DTA figures the thermal decompositions of different phases in the paste whereas TGA simultaneously measures the weight loss... [Pg.283]

Figure Bl.14.9. Imaging pulse sequence including flow and/or diflfiision encoding. Gradient pulses before and after the inversion pulse are supplemented in any of the spatial dimensions of the standard spin-echo imaging sequence. Motion weighting is achieved by switching a strong gradient pulse pair G, (see solid black line). The steady-state distribution of flow (coherent motion) as well as diffusion (spatially... Figure Bl.14.9. Imaging pulse sequence including flow and/or diflfiision encoding. Gradient pulses before and after the inversion pulse are supplemented in any of the spatial dimensions of the standard spin-echo imaging sequence. Motion weighting is achieved by switching a strong gradient pulse pair G, (see solid black line). The steady-state distribution of flow (coherent motion) as well as diffusion (spatially...
Below T polymers are stiff, hard, britde, and glass-like above if the molecular weight is high enough, they are relatively soft, limp, stretchable, and can be somewhat elastic. At even higher temperatures they flow and are tacky. Methods used to determine glass-transition temperatures and the reported values for a large number of polymers may be found in References 7—9. Values for the T of common acrylate homopolymers are found in Table 1. [Pg.162]

Variable-Area Flow Meters. In variable-head flow meters, the pressure differential varies with flow rate across a constant restriction. In variable-area meters, the differential is maintained constant and the restriction area allowed to change in proportion to the flow rate. A variable-area meter is thus essentially a form of variable orifice. In its most common form, a variable-area meter consists of a tapered tube mounted vertically and containing a float that is free to move in the tube. When flow is introduced into the small diameter bottom end, the float rises to a point of dynamic equiHbrium at which the pressure differential across the float balances the weight of the float less its buoyancy. The shape and weight of the float, the relative diameters of tube and float, and the variation of the tube diameter with elevation all determine the performance characteristics of the meter for a specific set of fluid conditions. A ball float in a conical constant-taper glass tube is the most common design it is widely used in the measurement of low flow rates at essentially constant viscosity. The flow rate is normally deterrnined visually by float position relative to an etched scale on the side of the tube. Such a meter is simple and inexpensive but, with care in manufacture and caHbration, can provide rea dings accurate to within several percent of full-scale flow for either Hquid or gas. [Pg.61]

In methacrylic ester polymers, the glass-transition temperature, is influenced primarily by the nature of the alcohol group as can be seen in Table 1. Below the the polymers are hard, brittle, and glass-like above the they are relatively soft, flexible, and mbbery. At even higher temperatures, depending on molecular weight, they flow and are tacky. Table 1 also contains typical values for the density, solubiHty parameter, and refractive index for various methacrylic homopolymers. [Pg.259]

The characteristics of interior paints that require testing and analysis include hiding and appearance, package stabiHty, adhesion, spatter resistance, flow and leveling, color and sheen uniformity, touch-up, stain removal, burnish resistance, and block and print resistance. A popular test that assesses the wet abrasion resistance of an interior paint is to measure its scmb resistance. A mechanical device is used to scmb a paint film of a specified thickness with a standard bmsh and abrasive cleanser suspension. The number of scmb cycles (back and forth movements of the weighted bmsh) at various end points (first cut through, or 50% removal of the film) is then recorded. Scmb resistance usually holds steady or decreases slightly as PVC is increased, but drops quickly once the CPVC is exceeded in a paint formulation. [Pg.546]

Melt Viscosity. The study of the viscosity of polymer melts (43—55) is important for the manufacturer who must supply suitable materials and for the fabrication engineer who must select polymers and fabrication methods. Thus melt viscosity as a function of temperature, pressure, rate of flow, and polymer molecular weight and stmcture is of considerable practical importance. Polymer melts exhibit elastic as well as viscous properties. This is evident in the swell of the polymer melt upon emergence from an extmsion die, a behavior that results from the recovery of stored elastic energy plus normal stress effects. [Pg.171]

The relationship between current flow and chemical reactions was estabUshed by Faraday who demonstrated that the amount of chemical change was directly proportional to the quantity of charge passed (//) and to the equivalent weight of the reacting material. [Pg.505]

The physics and modeling of turbulent flows are affected by combustion through the production of density variations, buoyancy effects, dilation due to heat release, molecular transport, and instabiUty (1,2,3,5,8). Consequently, the conservation equations need to be modified to take these effects into account. This modification is achieved by the use of statistical quantities in the conservation equations. For example, because of the variations and fluctuations in the density that occur in turbulent combustion flows, density weighted mean values, or Favre mean values, are used for velocity components, mass fractions, enthalpy, and temperature. The turbulent diffusion flame can also be treated in terms of a probabiUty distribution function (pdf), the shape of which is assumed to be known a priori (1). [Pg.520]

T and are the glass-transition temperatures in K of the homopolymers and are the weight fractions of the comonomers (49). Because the glass-transition temperature is directly related to many other material properties, changes in T by copolymerization cause changes in other properties too. Polymer properties that depend on the glass-transition temperature include physical state, rate of thermal expansion, thermal properties, torsional modulus, refractive index, dissipation factor, brittle impact resistance, flow and heat distortion properties, and minimum film-forming temperature of polymer latex... [Pg.183]

Moonej Viscosity. This is a measurement of the viscosity of the polymer that is commonly used ia the mbber iadustry. Mooney viscosity values typically range from 25 to 100. Mooney viscosity generally relates to polymer molecular weight, with the lower Mooney viscosity polymers providing improved flow and processiag characteristics and the higher Mooney NBRs providing improved physical properties. [Pg.522]

The second section of the spreadsheet contains the overall flows, the calculated component flows, and the material balance closure of each. The weighted nonclosure can be calculated using the random error calculated above, and a constraint test can be done with each component constraint if desired. Whether the measurement test is done or not, the nonclosure of the material balance for each component gives an indication of the validity of the overall flows and the compositions. If particiilar components are found to have significant constraint error, discussions with laboratory personnel about sampling and analysis and with instrument personnel about flow-measurement errors can take place before any extensive computations begin. [Pg.2567]

Input shaft power is the head of the compressor multiplied by the weight flow and divided by an appropriate efficiency with the result... [Pg.35]

LThe compensated flow transmitter determines the process flow it converts this quantity to a signal that is proportional to the process flow and sends it to the flow controller. The transmitter could be a pneumatic device using a venturi primary element, with compensation for pressure by a pressure element and compensation for tern perature by a thermocouple. The output would be a pneumatic sic nal that is proportional to weight flow. [Pg.361]

The compensated flow transmitter senses the process weight flow. It converts this signal to one that is proportional to the process flow and sends it to the weight flow controller. [Pg.362]


See other pages where Flow and weight is mentioned: [Pg.244]    [Pg.29]    [Pg.100]    [Pg.113]    [Pg.170]    [Pg.388]    [Pg.244]    [Pg.29]    [Pg.100]    [Pg.113]    [Pg.170]    [Pg.388]    [Pg.51]    [Pg.144]    [Pg.191]    [Pg.469]    [Pg.348]    [Pg.585]    [Pg.82]    [Pg.316]    [Pg.321]    [Pg.20]    [Pg.186]    [Pg.335]    [Pg.138]    [Pg.267]    [Pg.655]    [Pg.1203]    [Pg.1941]    [Pg.1956]    [Pg.1964]    [Pg.2499]    [Pg.188]    [Pg.310]    [Pg.80]    [Pg.452]    [Pg.43]    [Pg.216]   


SEARCH



© 2024 chempedia.info