Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fixed technology

Many of the new materials for the transportation sector - carbon fibre, GRP, plastics, light alloys, metals, as well as glass - cannot be joined or may not operate to their full potential with rigid fixing technology. The advantages of PUR... [Pg.135]

There can be an element of maintenance costs that is fixed and an element which is variable. Fixed maintenance costs cover routine maintenance such as regular maintenance on safety valves which must be carried out irrespective of the rate of production. There also can be an element of maintenance costs which is variable. This arises from the fact that certain items of equipment can need more maintenance as the production rate increases. Also, royalties which cover the cost of purchasing another company s process technology may have different bases. Royalties may be a variable cost, since they can sometimes be paid in proportion to the rate of production. Alternatively, the royalty might be a single-sum payment at the beginning of the project. In this case, the single-sum payment will become part of the project s capital investment. As such, it will be included in the annual capital repayment, and this becomes part of the fixed cost. [Pg.406]

The solutions we offer are based on two main technologies electrolytic silver recovery from fixer solutions and cascade fixing. In what follows we will give more teclmical details about these teclmologies. We will clarify the key-factors to obtain reliable and more ecological solutions for the silver in the rinsing water. [Pg.604]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

Sasol produces synthetic fuels and chemicals from coal-derived synthesis gas. Two significant variations of this technology have been commercialized, and new process variations are continually under development. Sasol One used both the fixed-bed (Arge) process, operated at about 240°C, as weU as a circulating fluidized-bed (Synthol) system operating at 340°C. Each ET reactor type has a characteristic product distribution that includes coproducts isolated for use in the chemical industry. Paraffin wax is one of the principal coproducts of the low temperature Arge process. Alcohols, ketones, and lower paraffins are among the valuable coproducts obtained from the Synthol process. [Pg.164]

Recent advances in Eischer-Tropsch technology at Sasol include the demonstration of the slurry-bed Eischer-Tropsch process and the new generation Sasol Advanced Synthol (SAS) Reactor, which is a classical fluidized-bed reactor design. The slurry-bed reactor is considered a superior alternative to the Arge tubular fixed-bed reactor. Commercial implementation of a slurry-bed design requires development of efficient catalyst separation techniques. Sasol has developed proprietary technology that provides satisfactory separation of wax and soHd catalyst, and a commercial-scale reactor is being commissioned in the first half of 1993. [Pg.164]

Process Technology Evolution. Maleic anhydride was first commercially produced in the early 1930s by the vapor-phase oxidation of benzene [71-43-2]. The use of benzene as a feedstock for the production of maleic anhydride was dominant in the world market well into the 1980s. Several processes have been used for the production of maleic anhydride from benzene with the most common one from Scientific Design. Small amounts of maleic acid are produced as a by-product in production of phthaHc anhydride [85-44-9]. This can be converted to either maleic anhydride or fumaric acid. Benzene, although easily oxidized to maleic anhydride with high selectivity, is an inherently inefficient feedstock since two excess carbon atoms are present in the raw material. Various compounds have been evaluated as raw material substitutes for benzene in production of maleic anhydride. Fixed- and fluid-bed processes for production of maleic anhydride from the butenes present in mixed streams have been practiced commercially. None of these... [Pg.453]

Benzene-Based Catalyst Technology. The catalyst used for the conversion of ben2ene to maleic anhydride consists of supported vanadium oxide [11099-11-9]. The support is an inert oxide such as kieselguhr, alumina [1344-28-17, or sUica, and is of low surface area (142). Supports with higher surface area adversely affect conversion of benzene to maleic anhydride. The conversion of benzene to maleic anhydride is a less complex oxidation than the conversion of butane, so higher catalyst selectivities are obtained. The vanadium oxide on the surface of the support is often modified with molybdenum oxides. There is approximately 70% vanadium oxide and 30% molybdenum oxide [11098-99-0] in the active phase for these fixed-bed catalysts (143). The molybdenum oxide is thought to form either a soUd solution or compound oxide with the vanadium oxide and result in a more active catalyst (142). [Pg.455]

Butane-Based Fixed-Bed Process Technology. Maleic anhydride is produced by reaction of butane with oxygen using the vanadium phosphoms oxide heterogeneous catalyst discussed earlier. The butane oxidation reaction to produce maleic anhydride is very exothermic. The main reaction by-products are carbon monoxide and carbon dioxide. Stoichiometries and heats of reaction for the three principal reactions are as follows ... [Pg.455]

Data for the production and sales of maleic anhydride and fumaric acid ia the United States between 1979 and 1992 are shown ia Table 5. Production of maleic anhydride during this time grew - 2% on average per year. Production of fumaric acid has declined during the same period as customers have switched to the less cosdy maleic anhydride when possible. All production of maleic anhydride in the United States in 1992 was from butane-based plants which used fixed-bed reactor technology as shown in Table 6. The number of fumaric acid producers has been reduced considerably since the early 1980s with only two producers left in the United States in 1992 as shown in Table 6. Pfizer shut down its fumaric acid plant at the end of 1993. However, Bartek of Canada will start up an expanded fumaric acid faciUty to supply the North American market for both their own and Huntsman s requirements. [Pg.458]

Two new processes usiag 2eohte-based catalyst systems were developed ia the late 1980s. Unocal s technology is based on a conventional fixed-bed system. CR L has developed a catalytic distillation system based on an extension of the CR L MTBE technology (48—51). [Pg.50]

Some details of this new process have been pubUshed by UOP (86). UOP claims equal or better LAB product quaUty via the fixed-bed process compared with the conventional Hquid-phase process employing HP acid catalyst. The new technology requites approximately 15% lower capital investment, mosdy the result of the elimination of safety equipment and equipment related to HP acid neutralization. [Pg.52]

The Xylene Plus process of ARGO Technology, Inc. (95,96) and the FINA T2BX process (97) also use a fixed-bed catalyst in the vapor phase for transalkylation of toluene to produce xylenes and benzene. The Mobil low temperature disproportionation (LTD) process employs a zeoHte catalyst for transalkylation of toluene in the Hquid phase at 260—315°C in the absence of hydrogen (98). [Pg.53]

Process. As soHd acid catalysts have replaced Hquid acid catalysts, they have typically been placed in conventional fixed-bed reactors. An extension of fixed-bed reactor technology is the concept of catalytic distillation being offered by CR L (48). In catalytic distillation, the catalytic reaction and separation of products occur in the same vessel. The concept has been appHed commercially for the production of MTBE and is also being offered for the production of ethylbenzene and cumene. [Pg.53]

Alcohol Amination. There are many similarities in the process technologies for Methods 1 and 2. In both, an alcohol reacts with ammonia over a fixed catalyst bed at elevated temperature. The reaction section consists of feed systems, vapori2ers, and/or preheaters which pass a Hquid or gaseous feed mixture over the catalyst bed in the desired ratio, temperature, and pressure. Possible amination catalysts for each method are as foUows. [Pg.199]


See other pages where Fixed technology is mentioned: [Pg.336]    [Pg.336]    [Pg.2146]    [Pg.22]    [Pg.230]    [Pg.230]    [Pg.336]    [Pg.336]    [Pg.2146]    [Pg.22]    [Pg.230]    [Pg.230]    [Pg.608]    [Pg.294]    [Pg.296]    [Pg.165]    [Pg.243]    [Pg.196]    [Pg.486]    [Pg.527]    [Pg.9]    [Pg.80]    [Pg.81]    [Pg.452]    [Pg.423]    [Pg.113]    [Pg.383]    [Pg.107]    [Pg.402]    [Pg.453]    [Pg.453]    [Pg.454]    [Pg.457]    [Pg.459]    [Pg.45]    [Pg.475]    [Pg.48]    [Pg.54]    [Pg.54]    [Pg.118]    [Pg.126]    [Pg.127]   
See also in sourсe #XX -- [ Pg.302 , Pg.531 , Pg.533 ]

See also in sourсe #XX -- [ Pg.147 ]




SEARCH



© 2024 chempedia.info