Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Finishing, combination with

Reactive softeners Some softeners have functional groups that can react with the corresponding groups of some fibres, for example A-methylolated amines with the hydroxyl groups of cellulose (compare the mechanism of the crease resistance finish). The result is a very durable finish, combined with the typical advantages and disadvantages of this crosslinking chemistry, as discussed in Chapter 5. [Pg.39]

In commercial use, easy-care and durable press finishes are frequently combined with other finishes to provide additional properties such as water and oil repellency, flame retardancy, soil release and the like. Often the combination of another finish with the cellulose crosslinking finish will result in a more durable effect from the first finish. Combination with pigment printing is very common because of similar chemistry to cellulose crosslinking agents and binders and the similar application conditions. [Pg.67]

Plywood furniture core panels, also about 19 mm (3/4 in.) thick, were normally made of a number of layers of relatively thick, 1.5—3.0 mm (1 /16—1 /8 in.) lower value wood veneers combined with thin surface pHes of the decorative veneer. These assembhes were laid-up from glued veneers and then pressed while the bonding occurred. Both lumber core and plywood core have been almost totally displaced in recent years by particleboard or medium-density fiberboard, both discussed herein. This change resulted from the increasing availabiHty and improved finishing characteristics of composites and from decreasing suppHes of core lumber or veneer of suitable quaHty. [Pg.382]

In the compounding technique, constituents are selected or rejected because of their odor, taste, and physical chemical properties, eg, boiling point, solubihty, and chemical reactivity, as weU as the results of flavor tests in water, symp, milk, or an appropriate medium. A compound considered to be characteristic is then combined with other ingredients into a flavor and tested as a finished flavor in the final product by an appHcations laboratory. [Pg.16]

In contrast to dyes, fluorescent whiteners are not appHed exclusively in special processes, but often in combination with bleaching and finishing steps. Fluorescent whiteners used in such processes must be stable and should not interfere with the operation. [Pg.119]

Whitening in combination with the finishing process is used primarily for woven fabrics of ceUulosic fibers and their blends with synthetic fibers. [Pg.119]

Additives. Because of their versatility, imparted via chemical modification, the appHcations of ethyleneimine encompass the entire additive sector. The addition of PEI to PVC plastisols increases the adhesion of the coatings by selective adsorption at the substrate surface (410). PEI derivatives are also used as adhesion promoters in paper coating (411). The adducts formed from fatty alcohol epoxides and PEI are used as dispersants and emulsifiers (412). They are able to control the viscosity of dispersions, and thus faciHtate transport in pipe systems (413). Eatty acid derivatives of PEI are even able to control the viscosity of pigment dispersions (414). The high nitrogen content of PEIs has a flame-retardant effect. This property is used, in combination with phosphoms compounds, for providing wood panels (415), ceUulose (416), or polymer blends (417,418) with a flame-retardant finish. [Pg.13]

Corrosion and Finishing. With few exceptions, magnesium exhibits good resistance to corrosion at normal ambient temperatures unless there is significant water content ia the environment ia combination with certain contaminants. The reaction which typically occurs is described by the equation... [Pg.332]

The wide range of types of paper products results in a variety of sludges. SoHd wastes result from several sources within the mill, eg, bark, sawdust, dirt, knots, pulpwood rejects, flyash, cinders, slag, and sludges. Sludges often are disposed of in combination with residuals from other sources. Approximately 300 kg of soHd waste per ton of finished product is generated by the pulp and paper industry. [Pg.12]

It is used in high grade industrial paints and, in combination with high performance pigments, in automotive finishes. The transparent type which is tinctoriaHy strong finds appHcations in a variety of printing inks. [Pg.29]

Resin-based repeUents may be used alone or in combination with durable-press resins. They are widely used as extenders for fluorochemical repeUents. When used alone, several of the resin-based finishes require an acid catalyst and curing at temperatures above 150°C for maximum repeUency and durabUity. When coappUed with durable-press finishes, which themselves require a magnesium chloride catalyst, the catalyst and curing conditions for the durable-press finish provide the necessary conditions for the repeUent. [Pg.308]

Copper(II) oxide [1317-38-0] can also cause porosity in the finished casting by combining with hydrogen formed by the dissociation of water in the mold material to form steam within the melt, thus causing holes during solidification. [Pg.248]

The CASS Test. In the copper-accelerated acetic acid salt spray (CASS) test (42), the positioning of the test surface is restricted to 15 2°, and the salt fog corrosivity is increased by increasing temperature and acidity, pH about 3.2, along with the addition of cupric chloride dihydrate. The CASS test is used extensively by the U.S. automobile industry for decorative nickel—chromium deposits, but is not common for other deposits or industries. Exposure cycle requirements are usually 22 hours, rarely more than 44 hours. Another corrosion test, now decreasing in use, for decorative nickel—chromium finishes is the Corrodkote test (43). This test utilizes a specific corrosive paste combined with a warm humidity cabinet test. Test cycles are usually 20 hours. [Pg.151]

Rapid aminations of 1-bromonaphthalenes with piperidine under microwave irradiation were reported by Hamann using Pd2(dba)3/rac. PPFA (N,N-dimethyl-1-[2-(diphenylphosphanyl)ferrocenyl]ethylamine) precatalyst in combination with NaO-t-Bu in toluene at 120 °C (Scheme 92) [97]. Typically, reactions performed under conventional heating at 120 °C (oil bath) were still progressing after 16 h and were essentially complete by 24 h, whereas the microwave reactions appeared to be finished after 10 min. The same reaction conditions were also useful to functionalize 5- and 8-bromoquinolines with anilines and aliphatic amines (Schemes 93 and 94). Remarkably, no product formation was observed with 5-bromo-8-cyanoquinoline and 5-bromo-8-methoxyquinoline under conventional heating for 24 h at the same temperature, while the desired 5-aminoquinolines were smoothly obtained under microwave irradiation in a reaction time of only 10 min. [Pg.201]

The hydrocolloids used stabilize this type of icing by their ability to form a gel or a highly viscous solution. Agar-agar, locust bean gum, sodium alginate (combined with a buffer and calcium salt), Irish moss extract, pectin, and karaya gum are hydrocolloids used. The finished icing may contain from 0.1 to 0.5% hydrocolloids. [Pg.55]


See other pages where Finishing, combination with is mentioned: [Pg.79]    [Pg.282]    [Pg.328]    [Pg.574]    [Pg.454]    [Pg.248]    [Pg.32]    [Pg.129]    [Pg.514]    [Pg.144]    [Pg.162]    [Pg.333]    [Pg.27]    [Pg.452]    [Pg.308]    [Pg.291]    [Pg.293]    [Pg.295]    [Pg.443]    [Pg.156]    [Pg.265]    [Pg.278]    [Pg.206]    [Pg.199]    [Pg.109]    [Pg.144]    [Pg.132]    [Pg.317]    [Pg.655]    [Pg.702]    [Pg.500]    [Pg.563]    [Pg.319]    [Pg.325]    [Pg.302]   


SEARCH



Combination finish

Finishing, combination with easy-care

© 2024 chempedia.info