Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filler-elastomer interactions carbon black

By plotting the percentage of carbon particles separated from the vulcanizate versus the stress applied to the sample during extension, Hess et al. determined the stress at which the arbitrary quantity of 20% of the black had been separated from the matrix. This stress was indicated as the adhesion index. It appears (Fig. 12) that blacks of higher structures are associated with an increase of the adhesion index, i.e., with an enhancement of filler-elastomer interactions. [Pg.113]

It appears from the evolution of the adhesion index that a distinction has to be made between the interactions carbon blacks are able to have with unsaturated or with saturated (or near-to-saturated) elastomers. Thus, the adhesion index of butyl rubber is enhanced upon oxidation of the black, while the reverse is observed with polybutadiene 38). The improvement of the reinforcing ability of carbon black upon oxidation, in the former case, has been interpreted by Gessler 401 as due to chemical interactions of butyl rubber with active functional groups on the solid surface. Gessler, relating the reinforcing characteristics of the oxidized carbon black for butyl rubber to the presence of carboxyl groups on the surface of the filler, postulated a cationic... [Pg.120]

Another way for increasing filler-elastomer interactions could be the grafting of a polymer on the solid surface. A number of methods exist to secure the attachment of macromolecules to the surface of carbon black particles e.g., a polymeric chain may be grown on an initiation site on the surface, small molecules previously attached to the surface may be copolymerized with a monomer, a polymeric chain, either radical, cationic, or anionic in nature, may be terminated on an active site of the solid surface, etc. 55 63). [Pg.125]

Fillers in Rubber. Carbon black and calcium silicate are able to reinforce rubber. For example, the tensile strength of an SBR vulcanizate can be raised from 350 to 3500 Ib/in. by compounding with 50% of its weight of carbon black (54). The activity of the carbon black depends on particle size and shape, porosity, and number of active sites, which are less than 5% of the total surface. Elastomers of a polar nature, such as chloroprene or nitrile rubber, will interact more strongly with filler surfaces having dipoles, such as -OH and -CCX)H groups or chlorine atoms. [Pg.232]

Donne developed ideas on the role of chemical interaction between saturated and unsaturated elastomers and carbon black and found that on the surface of highly reinforcing blacks, only 10% hydrogen atoms are reactive, and increased hydrogen content brings about a rise in the modulus of the rubber. Chemical and adsorption interaction with the surface of the carbon black leads to strong binding of the rubber. The fraction of bound rubber is determined by the gel content of the filler-rubber mixture the bound rubber content is proportional to the surface area. ... [Pg.362]

M.J. Wang, S. Wolff, J.B. Donnet. Filler-elastomer interactions. Part III carbon black surface energies and interactions with elastomer analogs. Rubb. Chem. TechnoL, 64,714-736,1991. [Pg.80]

The study of the mechanical properties of filled elastomer systems is a chaUenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward mle of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fiUers hke sihca and carbon black on the reinforcement of elastomers.In general, the strucmre-property relationships developed for filled elastomers have evolved into the foUowing major areas FiUer structure, hydrodynamic reinforcement, and interactions between fiUers and elastomers. [Pg.503]

Before dealing with reinforcement of elastomers we have to introduce the basic molecular features of mbber elasticity. Then, we introduce—step-by-step—additional components into the model which consider the influence of reinforcing disordered solid fillers like carbon black or silica within a rabbery matrix. At this point, we will pay special attention to the incorporation of several additional kinds of complex interactions which then come into play polymer-filler and filler-filler interactions. We demonstrate how a model of reinforced elastomers in its present state allows a thorough description of the large-strain materials behavior of reinforced mbbers in several fields of technical applications. In this way we present a thoroughgoing line from molecular mechanisms to industrial applications of reinforced elastomers. [Pg.607]

The stress-strain curves of the vulcanizates with 40 phr filler loading are shown in Fig. 28. SBR reinforced with plasma-coated carbon black shows a slight improvement in tensile strength relative to SBR with uncoated carbon black. Polyacetylene-coated carbon black can better interact chemically and physically with the elastomer and thus contributes extra to the reinforcement of the elastomer. [Pg.208]

The reduction in filler-filler interaction due to acetylene-plasma treatment is obviously due to the lower surface energy of the coated carbon black. The carbon black shows an appreciable reduction in surface energy after the plasma treatment, towards the range of the polymer S-SBR. This results in a better wetting of the filler particles by the elastomer [53, 54]. [Pg.209]

We restrict, in this paper, the discussions related to the reinforcement of elastomers to the investigation of a single filler, carbon black. We, moreover, mostly focus on the part played by surface chemical interactions in the properties of filler reinforced rubbers. [Pg.103]

It was shown, on the one hand, that gum-filler interactions are associated with the immobilization of a certain amount of rubber on the surface or inside the carbon black aggregates, and, on the other hand, that the corresponding bound or occluded rubbers play important roles in the reinforcement process due either to a restriction of elastomer chain mobility in the vicinity of the filler or to an increase of the effective volume of the latter. What are now the effects exerted by a filler on the stress-strain behavior and the modulus of cured rubbers ... [Pg.117]

From a fit of Equation (10) to spatially resolved relaxation curves, images of the parameters A, B, T2, q M2 have been obtained [3- - 32]. Here A/(A + B) can be interpreted as the concentration of cross-links and B/(A + B) as the concentration of dangling chains. In addition to A/(A + B) also q M2 is related to the cross-link density in this model. In practice also T2 has been found to depend on cross-link density and subsequently strain, an effect which has been exploited in calibration of the image in Figure 7.6. Interestingly, carbon-black as an active filler has little effect on the relaxation times, but silicate filler has. Consequently the chemical cross-link density of carbon-black filled elastomers can be determined by NMR. The apparent insensitivity of NMR to the interaction of the network chains with carbon black filler particles is explained with paramagnetic impurities of carbon black, which lead to rapid relaxation of the NMR signal in the vicinity of the filler particles. [Pg.258]

A low-resolution proton NMR method is one of the few techniques that have so far proved to be suitable for studying elastomer-filler interactions in carbon-black-filled conventional rubbers and silica-filled silicon rubbers [20, 62, 79]. It was pointed out by McBrierty and Kenny that Many of the basic characteristics of filled elastomers are revealed by low resolution spectra while the more sophisticated techniques and site specific information refine interpretations and clarify motional dynamics [79]. [Pg.368]

Next 129Xe experiments on an EPDM terpolymer, which is present as the elastomer component in a composite material with carbon black will be discussed. The question investigated for these materials is whether the existence of any polymer-filler interaction can be detected by 129Xe NMR. This interaction influences the mobility of the elastomer chains in a relatively large shell around the filler particles. This fraction is called the bound rubber fraction. It is generally believed that the bound rubber fraction influences the mechanical and frictional properties of the filled elastomer [17, 18]. [Pg.474]

Elastomer-filler interactions were the subject of many intensive investigations. Kaufmann and co-workers [17] investigated carbon-black-filled EPDM by nuclear spin relaxation time measurements and found three distinct regions in the material. These regions are characterised by different mobility of the elastomer chains a mobile region in which the polymer chains have no interaction with the filler particles, loosely bound rubber in an outer shell around the carbon black particles and an inner shell of tightly bound elastomer chain with limited mobility. [Pg.475]

The characterization of the elastomer-filler interactions at a molecular level may be cairied out by spectroscopic techniques such as IR and NMR spectroscopy. X-ray and neutron scattering, dynamic mechanical and dielectric spectroscopy, and molecular dynamics simulations [6]. Up to now, the most comprehensive studies of silica filled PDMS [4, 7-22] and carbon black filled conventional rubbers [23] have been carried out by H [4, 7—20, 23], [21], and C NMR relaxation experiments [22],... [Pg.782]

This work investigates the behaviour of elastomeric chains (polybutadienes of identical molecular weight but different microstructures) in the close vicinity of carbon black surfaces in order to attain a better understanding of the structure and properties of interphases. Elastomer-filler interactions are assessed through the study of the thermal properties and NMR relaxation characteristics of the corresponding materials. MAS solid-state NMR provides information on the effect exerted by polymer-filler interactions on the mobility of the various constitutive species of the macromolecular backbone. [Pg.259]


See other pages where Filler-elastomer interactions carbon black is mentioned: [Pg.120]    [Pg.121]    [Pg.410]    [Pg.719]    [Pg.914]    [Pg.12]    [Pg.169]    [Pg.48]    [Pg.253]    [Pg.287]    [Pg.485]    [Pg.121]    [Pg.616]    [Pg.785]    [Pg.939]    [Pg.102]    [Pg.103]    [Pg.113]    [Pg.119]    [Pg.159]    [Pg.102]    [Pg.198]    [Pg.273]    [Pg.47]    [Pg.80]    [Pg.588]   
See also in sourсe #XX -- [ Pg.383 ]




SEARCH



Carbon black elastomer

Elastomer interactions

Filler elastomers

Fillers carbonate)

Fillers interactions

Fillers interactive

© 2024 chempedia.info