Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed brushes

Motomov, M., Sheparovych, R., Katz, E., and Minko, S. 2008. Chemical gating with nanostructured responsive jxrlymer brushes mixed brush versus homopolymer brush. ACS Nano 2 41-52. [Pg.204]

Polonium can be mixed or alloyed with beryllium to provide a source of neutrons. The element has been used in devices for eliminating static charges in textile mills, etc. however, beta sources are both more commonly used and less dangerous. It is also used on brushes for removing dust from photographic films. The polonium for these is carefully sealed and controlled, minimizing hazards to the user. [Pg.149]

Alternate beef and shrimp on skewers. Mix the peanut oil, soy sauce and lime juice in a bowl to use a basting sauce. On a nice, hot coai or wood grill, cook the k-bobs until medium rare (or to taste) brushing them often with the basting liquid. Put aside and keep warm. [Pg.162]

A more accurate analysis of this problem incorporating renormalization results, is possible [86], but the essential result is the same, namely that stretched, tethered chains interact less strongly with one another than the same chains in bulk. The appropriate comparison is with a bulk-like system of chains in a brush confined by an impenetrable wall a distance RF (the Flory radius of gyration) from the tethering surface. These confined chains, which are incapable of stretching, assume configurations similar to those of free chains. However, the volume fraction here is q> = N(a/d)2 RF N2/5(a/d)5/3, as opposed to cp = N(a/d)2 L (a/d)4/3 in the unconfined, tethered layer. Consequently, the chain-chain interaction parameter becomes x ab N3/2(a/d)5/2 %ab- Thus, tethered chains tend to mix, or at least resist phase separation, more readily than their bulk counterparts because chain stretching lowers the effective concentration within the layer. The effective interaction parameters can be used in further analysis of phase separation processes... [Pg.54]

In one of several conceivable combinations of molecular weight and surface density, the binary brush forms a mixed, shorter layer and the extra length in and number of the longer chains is sufficient that these extra segments crowd one another in the outer layer and form an outer, stretched tethered layer. The Alexander analysis applied to the two-layer situation gives for the outer layer thickness of the mixture [132] ... [Pg.60]

Place Arcol Polyol F-3022 (100 g, 0.1 eq., 56 OH, mixed PO/EO triol from Bayer) into a suitable container. To this add distilled water (3.3 g, 0.4125 eq.), Niax Silicone L-620 (0.5 g, a silicone surfactant from OSi Specialties), and Niax C-183 (0.12 g, an amine catalyst from OSi Specialties). Thoroughly blend this mixture without incorporating air bubbles. Then add Dabco T-9 (0.25 g, stannous octoate from Air Products) and mix again. The T-9 must be added last because it is quite water sensitive, so its exposure to the water-containing polyol blend should be kept to a minimum. To this polyol blend, quickly add Mondur TD-80 (42.6 g, 0.4868 eq., a mixture of 80% 2,4-TDI and 20% 2,6-TDI isomers from Bayer) and immediately stir at 3000 rpm for 5 s. Quickly pour the reaction mixture into a suitable container such as a 1-qt paper or plastic cup and allow the foam to free-rise. The stir blade may be wiped or brushed clean. [Pg.251]

The ionized forms of polypeptides exhibit many characteristics in common therefore, we have studied them under various conditions. The most interesting observation is the transition of a polyelectrolyte brush found by changing the polyelectrolyte chain density. The brush layers have been prepared by means of the LB film deposition of an amphiphile, 2C18PLGA(48), at pH 10. Mixed monolayers of 2C18PLGA(48) and dioctadecylphos-phoric acid, DOP, were used in order to vary the 2C18PLGA(48) content in the monolayer. [Pg.13]

Irrespective of the physical form of the carotenoid in the plant tissue it needs to be dissolved directly into the bulk lipid phase (emulsion) and then into the mixed micelles formed from the emulsion droplets by the action of lipases and bile. Alternatively it can dissolve directly into the mixed micelles. The micelles then diffuse through the unstirred water layer covering the brush border of the enterocytes and dissociate, and the components are then absorbed. Although lipid absorption at this point is essentially complete, bile salts and sterols (cholesterol) may not be fully absorbed and are not wholly recovered more distally, some being lost into the large intestine. It is not known whether carotenoids incorporated into mixed micelles are fully or only partially absorbed. [Pg.118]

In all microscopic methods, sample preparation is key. Powder particles are normally dispersed in a mounting medium on a glass slide. Allen [7] has recommended that the particles not be mixed using glass rods or metal spatulas, as this may lead to fracturing a small camel-hair brush is preferable. A variety of mounting fluids with different viscosities and refractive indices are available a more viscous fluid may be preferred to minimize Brownian motion of the particles. Care must be taken, however, that the refractive indices of sample and fluid do not coincide, as this will make the particles invisible. Selection of the appropriate mounting medium will also depend on the solubility of the analyte [9]. After the sample is well dispersed in the fluid, a cover slip is placed on top... [Pg.168]

Besides homogeneous and uniform SAMs or polymer brushes, systems of tailored heterogeneity such as mixed monolayers of two or more compounds, gradients, block copolymer brushes etc. are now under investigation. Especially, the development of patterned surfaces offers the exciting possibility to perform multiple parallel experiments on a single substrate or cascade reactions. [Pg.434]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

Considering a mixed brush made of mutually incompatible grafted chains, a novel transition to a brush characterized by a lateral composition modulation was found [73]. Even more complicated spatial structures are obtained with grafted diblock copolymers [74]. Finally, we would like to mention in passing that these static brush phenomena have interesting consequences for the dynamic properties of polymer brushes [75]. [Pg.170]


See other pages where Mixed brushes is mentioned: [Pg.132]    [Pg.132]    [Pg.341]    [Pg.138]    [Pg.93]    [Pg.120]    [Pg.146]    [Pg.140]    [Pg.618]    [Pg.159]    [Pg.160]    [Pg.1342]    [Pg.614]    [Pg.667]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.201]    [Pg.253]    [Pg.251]    [Pg.134]    [Pg.91]    [Pg.147]    [Pg.488]    [Pg.177]    [Pg.490]    [Pg.74]    [Pg.284]    [Pg.44]    [Pg.236]    [Pg.67]    [Pg.165]    [Pg.420]    [Pg.57]    [Pg.58]    [Pg.62]    [Pg.71]    [Pg.111]    [Pg.140]   
See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.161 ]




SEARCH



© 2024 chempedia.info