Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Feed system, liquid phase processes

Membrane Pervaporation Since 1987, membrane pei vapora-tion has become widely accepted in the CPI as an effective means of separation and recovery of liquid-phase process streams. It is most commonly used to dehydrate hquid hydrocarbons to yield a high-purity ethanol, isopropanol, and ethylene glycol product. The method basically consists of a selec tively-permeable membrane layer separating a liquid feed stream and a gas phase permeate stream as shown in Fig. 25-19. The permeation rate and selectivity is governed bv the physicochemical composition of the membrane. Pei vaporation differs From reverse osmosis systems in that the permeate rate is not a function of osmotic pressure, since the permeate is maintained at saturation pressure (Ref. 24). [Pg.2194]

Significant development has occurred within the industry over the last several years with respect to liquid-phase processes. One example of this process that is reasonably close to commercialization is that developed by Air Products. A pilot unit has been operated for several years at their La Porte, Texas location. The process is characterized briefly as using an inert hydrocarbon reaction medium in the liquid phase to absorb the synthesis heat of reaction conventional copper-zinc catalyst is fed to the reactor system as a slurry. This type of process appears to be particularly well suited to substoichiometric feeds (hi earbon eontent), such as those produced by partial oxidation or coal gasification. The Air Products process has been extensively deseribed in patent literature [14]. Kinetie data and liquid-phase reaetion systems have also been extensively diseussed by Lee in Methanol Synthesis Technology [15]. [Pg.73]

On the basis of this past work and ongoing experiments, we feel that the liquid-phase methanation process promises to become an economic, reliable, and versatile means of converting synthesis gas mixtures to high Btu gas. Chem Systems believes that this technology is a key step in the transformation of fossil feeds into pipeline gas, and we look forward to its successful application in commercial coal gasification plants. [Pg.168]

So far, the separation of azeotropic systems has been restricted to the use of pressure shift and the use of entrainers. The third method is to use a membrane to alter the vapor-liquid equilibrium behavior. Pervaporation differs from other membrane processes in that the phase-state on one side of the membrane is different from the other side. The feed to the membrane is a liquid mixture at a high-enough pressure to maintain it in the liquid phase. The other side of the membrane is maintained at a pressure at or below the dew point of the permeate, maintaining it in the vapor phase. Dense membranes are used for pervaporation, and selectivity results from chemical affinity (see Chapter 10). Most pervaporation membranes in commercial use are hydrophyllic19. This means that they preferentially allow... [Pg.255]

A liquid-phase reaction A B is to be conducted in a CSTR at steady-state at 163°C. The temperature of the feed is 20°C, and 90% conversion of A is required. Determine the volume of a CSTR to produce 130 kg B h 1, and calculate the heat load (Q) for the process. Does this represent addition or removal of heat from the system ... [Pg.341]

In liquid phase adsorption, some particular components of the feed steam are selectively adsorbed or extracted by a solid zeoUtic adsorbent. At the same time, other components of the feed stream are rejected by the adsorbent. At equilibrium, the liquid composition within the zeolite pores differs from that of the liquid surrounding the zeolite. In the process, a second liquid component, the desorbent, is also introduced into the system. The function of the desorbent is to desorb and recover the extracted feed components from the adsorbent In order for the desorbent to perform well in the process, a suitable interactive force between the desorbent and the extracted components to the adsorbent is required. If the selectivity is too high, it requires high desorbent volume to desorb the extracted components from the adsorbent. If the selectivity is too low, the desorbent tends to compete with extracted components for capacity of adsorbent. [Pg.219]

In the process (Figure 9-37), the residue feed is slurried with a small amount of finely powdered additive and mixed with hydrogen and recycle gas prior to preheating. The feed mixture is routed to the liquid phase reactors. The reactors are operated in an up-flow mode and arranged in series. In a once through operation conversion rates of >95% are achieved. Typically the reaction takes place at temperatures between 440 and 480°C and pressures between 150 and 250 bar. Substantial conversion of asphaltenes, desulfurization and denitrogenation takes place at high levels of residue conversion. Temperature is controlled by a recycle gas quench system. [Pg.395]

Separations in two-phase systems with one immobilized interface(s) are much newer. The first paper on membrane-based solvent extraction (MBSE) published Kim [4] in 1984. However, the inventions of new methods of contacting two and three liquid phases and new types of liquid membranes have led to a significant progress in the last forty years. Separations in systems with immobilized interfaces have begun to be employed in industry. New separation processes in two- and three-phase systems with one or two immobilized L/L interfaces realized with the help of microporous hydrophobic wall(s) (support) are alternatives to classical L/L extraction and are schematically shown in Figure 23.1. Membrane-based solvent extraction (MBSE) in a two-phase system with one immobilized interface feed/solvent at the mouth of microspores of hydrophobic support is depicted in Figure 23.1a and will be discussed... [Pg.513]

Pertraction (PT) can be realized through a liquid membrane, but also through a nonporous polymeric membrane that was applied also industrially [10-12]. Apart from various types of SLM and BLM emulsion liquid membranes (ELM) were also widely studied just at the beginning of liquid membrane research. For example, an emulsion of stripping solution in organic phase, stabilized by surfactant, is dispersed in the aqueous feed. The continuous phase of emulsion forms ELM. Emulsion and feed are usually contacted in mixed column or mixer-settlers as in extraction. EML were applied industrially in zinc recovery from waste solution and in several pilot-plant trials [13,14], but the complexity of the process reduced interest in this system. More information on ELM and related processes can be found in refs. [8, 13-16]. [Pg.515]

In what follows, we begin by introducing two examples of process systems with recycle and purge. First, we analyze the case of a reactor with gas effluent connected via a gas recycle stream to a condenser, and a purge stream used to remove the light impurity present in the feed. In the second case, the products of a liquid-phase reactor are separated by a distillation column. The bottoms of the column are recycled to the reactor, and the trace heavy impurity present in the feed stream is removed via a liquid purge stream. We show that, in both cases, the dynamics of the system is modeled by a system of stiff ODEs that can, potentially, exhibit a two-time-scale behavior. [Pg.64]

For a process system that involves a single condensable component, a vapor-liquid phase change, and specified or requested values of feed or product stream properties (temperature, pressure, dew point, relative saturation or humidity, degrees of superheat, etc.), draw and label the flowchart, carry out the degree-of-freedom analysis, and perform the required calculations. [Pg.239]


See other pages where Feed system, liquid phase processes is mentioned: [Pg.211]    [Pg.211]    [Pg.211]    [Pg.1313]    [Pg.227]    [Pg.562]    [Pg.221]    [Pg.273]    [Pg.158]    [Pg.227]    [Pg.292]    [Pg.83]    [Pg.233]    [Pg.220]    [Pg.197]    [Pg.189]    [Pg.260]    [Pg.658]    [Pg.170]    [Pg.221]    [Pg.448]    [Pg.118]    [Pg.119]    [Pg.517]    [Pg.1151]    [Pg.78]    [Pg.209]    [Pg.36]    [Pg.172]    [Pg.56]    [Pg.227]    [Pg.77]    [Pg.963]    [Pg.602]    [Pg.517]    [Pg.548]    [Pg.373]   
See also in sourсe #XX -- [ Pg.417 ]




SEARCH



Feed phase

Feed process

Feeding systems

Liquid feed system

Phase feeding

Phase processes

© 2024 chempedia.info