Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities heavy

I I Light end impurities Heavy end impurities Melittin Displacer... [Pg.320]

Hori et al. pointed out that the deactivation takes place due to the presence of heavy metal impurities originally contained in chemical reagents used as the electrolytes. Heavy metal ions in the electrolyte solution are cathodically reduced and deposited on the electrode surface during the CO2 reduction, deteriorating the electrocatalytic properties of metal electrodes. They apphed a classically established technique of preelectrolysis to purification of electrolyte solutions since their early works. Frese also referred to the impurity heavy metals, and mentioned the presence of Fe and Zn on the Cu electrode after electrolysis on the basis of the surface analysis by XPS. The importance of the purity of the electrolyte solution was mentioned in Section I1.2(zz) as well. The mechanism of the deactivation was recently established, and sununarized below. ... [Pg.122]

At the contactor we have the impure heavy stream and the solvent stream being fed, and at the outlet the two have been mixed. The material balances for this unit are ... [Pg.227]

One way to use this result would be to compute the flow rate of the solvent that we would need in order to achieve a certain exit impurity concentration Cihd in the heavy stream, given Kd, the flow rate of the impure heavy feed and its impurity level Cihd. [Pg.230]

Note that S2 is a large distillation column, with about 50 theoretical stages, operating at high reflux. The separation in S3 is easy, and requires only few stages. Note that S4 and S5 are small units, but of particular importance, because of their function S4 is the only exit of light impurities (Lights), while S5 is the only exit of the heavy impurities (Heavies). [Pg.663]

The coking process produces electrode quality coke from vacuum residues of good quality (low metal and sulfur contents) or coke for fuel in the case of heavy crude or vacuum residue conversion having high impurity levels. [Pg.380]

Finally, micellar systems are useful in separation methods. Micelles may bind heavy-metal ions, or, through solubilization, organic impurities. Ultrafiltration, chromatography, or solvent extraction may then be used to separate out such contaminants [220-222]. [Pg.484]

Selenium and tellurium occur naturally in sulphide ores, usually as an impurity in the sulphide of a heavy metal. They are recovered from the flue dust produced when the heavy metal sulphide is roasted. [Pg.262]

Type J thermocouples (Table 11.58) are one of the most common types of industrial thermocouples because of the relatively high Seebeck coefficient and low cost. They are recommended for use in the temperature range from 0 to 760°C (but never above 760°C due to an abrupt magnetic transformation that can cause decalibration even when returned to lower temperatures). Use is permitted in vacuum and in oxidizing, reducing, or inert atmospheres, with the exception of sulfurous atmospheres above 500°C. For extended use above 500°C, heavy-gauge wires are recommended. They are not recommended for subzero temperatures. These thermocouples are subject to poor conformance characteristics because of impurities in the iron. [Pg.1216]

Microstructurc. Crystal size, porosity, and impurity phases play a major role in fixing the fracture characteristics and toughness of an abrasive grain. As an example, rapidly cooled fused aluminum oxide has a microcrystalline stmcture promoting toughness for heavy-duty grinding appHcations, whereas the same composition cooled slowly has a macrocrystalline stmcture more suitable for medium-duty grinding. [Pg.10]

A cmde acetone product is recovered by distillation from the reaction mass. One or two additional distillation columns may be required to obtain the desired purity. If two columns are used, the first tower removes impurities such as acetaldehyde and propionaldehyde. The second tower removes undesired heavies, the major component being water. [Pg.96]

Optical crystals of high purity lithium fluoride are grown by use of the Stockbarger process (10) in sizes to 25 cm dia x 25 cm high (14). Typical commercial material contains 99.2% LiF typical impurities include Li CO and Fe202 at <0.1% levels, and and heavy metals as Pb at <0.01%... [Pg.206]

Fumaric acid is sold as resia-grade and food-grade. The general sales specification under which resia-grade fumaric acid is sold ia the United States specifies white, crystalline granules with a minimum assay of 99.6% and maximum ash content of 0.05%. The moisture specification is 0.3% maximum with < 10 ppm heavy metals. The color of a 5% solution ia methanol is to be less than 10 APHA. Food-grade fumaric acid calls for somewhat lower impurity levels. Particle size and particle size distribution are important ia many appHcations. [Pg.459]

Size reduction (qv) or comminution is the first and very important step in the processing of most minerals (2,6,10,20—24). It also involves large expenditures for heavy equipment, energy, operation, and maintenance. Size reduction is necessary because the value minerals are intimately associated with gangue and need to be Hberated, and/or because most minerals processing/separation methods require the ore mass to be of certain size and/or shape. Size reduction is also required in the case of quarry products to produce material of controlled particle size (see Size measurement of particles). In some instances, hberation of valuables or impurities from the ore matrix is achieved without any apparent size reduction. Scmbbers and attritors used in the industrial minerals plants, eg, phosphate, mtile, glass sands, or clay, ate examples. [Pg.396]

Calcium Pyrophosphates. As is typical of the pyrophosphate salts of multiple-charged or heavy-metal ions, the calcium pyrophosphates are extremely insoluble ia water. Calcium pyrophosphate exists ia three polymorphic modifications, each of which is metastable at room temperature. These are formed progressively upon thermal dehydration of calcium hydrogen phosphate dihydrate as shown below. Conversion temperatures indicated are those obtained from thermal analyses (22,23). The presence of impurities and actual processing conditions can change these values considerably, as is tme of commercial manufacture. [Pg.337]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

Most of the heavy-metal impurities present in 2inc salt solutions must be removed before the precipitation reaction, or these form insoluble colored sulfides that reduce the whiteness of the 2inc sulfide pigment. This end is usually achieved by the addition of 2inc metal which reduces most heavy-metal ions to their metallic form. The brightness of 2inc sulfide can be improved by the addition of a small amount of cobalt salts (ca 0.04% on a Co/Zn basis) (20). Barium sulfate [7727-43-7] formed in the first step is isolated and can be used as an extender. [Pg.10]

Chemical fertiliser is the predominant market for langbeinite. Comparatively small but increasing amounts of langbeinite are used by the animal feed ingredient industry (see Feeds and feed additives). Producers who supply this market must take special precautions to be sure that any langbeinite intended as an animal feed ingredient meets all USDA specifications for toxic heavy metals and other impurities. [Pg.532]

Potassium Carbonate. Except for small amounts produced by obsolete processes, eg, the leaching of wood ashes and the Engel-Precht process, potassium carbonate is produced by the carbonation, ie, via reaction with carbon dioxide, of potassium hydroxide. Potassium carbonate is available commercially as a concentrated solution containing ca 47 wt % K CO or in granular crystalline form containing 99.5 wt % K CO. Impurities are small amounts of sodium and chloride plus trace amounts (<2 ppm) of heavy metals such as lead. Heavy metals are a concern because potassium carbonate is used in the production of chocolate intended for human consumption. [Pg.532]

Alumina. A pure although not necessarily a refractory grade of alumina is obtained from bauxite by the Bayer process. In this process, the gibbsite from the bauxite is dissolved in a caustic soda solution and thus separated from the impurities. Alumina, calcined, sintered, or fused, is a stable and extremely versatile material used for a variety of heavy industrial, electronic, and technical appHcations. [Pg.25]


See other pages where Impurities heavy is mentioned: [Pg.320]    [Pg.172]    [Pg.421]    [Pg.557]    [Pg.320]    [Pg.172]    [Pg.421]    [Pg.557]    [Pg.52]    [Pg.543]    [Pg.299]    [Pg.998]    [Pg.51]    [Pg.88]    [Pg.11]    [Pg.182]    [Pg.443]    [Pg.486]    [Pg.175]    [Pg.440]    [Pg.208]    [Pg.128]    [Pg.454]    [Pg.330]    [Pg.505]    [Pg.403]    [Pg.46]    [Pg.166]    [Pg.180]    [Pg.336]    [Pg.341]    [Pg.431]    [Pg.561]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Heavy element impurities in solids AIMPs as embedding Potentials

Heavy metal impurities, concentrations

Processes with heavy impurities

© 2024 chempedia.info