Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Feed main methods

The Brown-Martin method (38) This method is based on the observation that at the feed pinch point, the ratio of key components is essentially equal to their ratio in the liquid feed. This method is the least complicated and gives conservative estimates. Suitable mainly for hydrocarbons in situations where great accuracy is not required (28). [Pg.109]

Two main methods have been developed for feed foaming applied to spray drying, namely gas-desorption and gas-admixing. In the gas-desorption method, the gas (CO2) is dissolved in the liquid feed under moderate pressure subsequently, after atomization, droplets supersaturated with the gas are formed, such that the bubbles become nucleated and grow within the droplets. [Pg.199]

For the industrial production of riboflavin as pharmaceuticals, the traditional methodology comprising the dkect condensation of (13) with (14) in an acidic medium with continuous optimisation of the reaction conditions is stiU used (28). A great part of riboflavin manufactured by fermentative methods is used for feeds in the form of concentrates. The present world demand of riboflavin may be about 2500 t per year. Of this amount, 60%, 25%, and 15% are used for feeds, pharmaceuticals, and foodstuffs, respectively. The main producers are Hoffmann-La Roche, BASF, Merck Co., and others. [Pg.78]

The steps when designing a SMB which would allow one to process a given amount of feed per unit time have been described in detail [46, 57]. The procedure described was based on modeling of nonlinear chromatography. The procedure is rigorous, versatile and mainly requires the determination of competitive adsorption isotherms. If the adequate tools and methods are used, the procedure is not tedious and requires less work than is sometimes claimed. The procedure is briefly described below. [Pg.262]

Make-up water. A semi-sealed section within the main tank will feed water from the treatment plant to the main tank either through a separate make-up tank or. In either case, the water level will be the same in both sections, excluding the ullage left for condense returns. Control of the make-up water level may be by float valve, float switches or conductivity probes. These methods allow water to flow through the treatment plant, although conductivity probes or switches permit a positive flow and avoid the risk of slippage. [Pg.359]

Automatically Controlled Modular System This method employs one large manually controlled transformer-rectifier used in conjunction with a number of modular cabinets located adjacent to each item of plant requiring protection. The main transformer-rectifier feeds d.c. to each of the module units and the modular unit provides the exact amount of current required by the item of plant in question. [Pg.221]

Scientists from Politecnico di Milano and Ineos Vinyls UK developed a tubular fixed-bed reactor comprising a metallic monolith [30]. The walls were coated with catalytically active material and the monolith pieces were loaded lengthwise. Corning, the world leader in ceramic structured supports, developed metallic supports with straight channels, zig-zag channels, and wall-flow channels. They were produced by extrusion of metal powders, for example, copper, fin, zinc, aluminum, iron, silver, nickel, and mixtures and alloys [31]. An alternative method is extrusion of softened bulk metal feed, for example, aluminum, copper, and their alloys. The metal surface can be covered with carbon, carbides, and alumina, using a CVD technique [32]. For metal monoliths, it is to be expected that the main resistance lies at the interface between reactor wall and monolith. Corning... [Pg.194]

We first note the very large differences in column performance for the two methods. Effective plates per second represents the speed characteristics of a column (e.g., the number of plates that can be generated in a given time interval) (13). As can be seen, HPLC is 100 to 1000 times faster than classTcal LC. (We shall discuss the differences between PLB and PB in the next section.) This improved performance arises mainly from the use of significantly smaller particle sizes in HPLC. Moreover, in classical LC, the mobile phase is delivered to the column by gravity feed, hence, the very low mobile phase velocities. In HPLC, it is desireable to improve performance... [Pg.228]

Radial basis function networks (RBF) are a variant of three-layer feed forward networks (see Fig 44.18). They contain a pass-through input layer, a hidden layer and an output layer. A different approach for modelling the data is used. The transfer function in the hidden layer of RBF networks is called the kernel or basis function. For a detailed description the reader is referred to references [62,63]. Each node in the hidden unit contains thus such a kernel function. The main difference between the transfer function in MLF and the kernel function in RBF is that the latter (usually a Gaussian function) defines an ellipsoid in the input space. Whereas basically the MLF network divides the input space into regions via hyperplanes (see e.g. Figs. 44.12c and d), RBF networks divide the input space into hyperspheres by means of the kernel function with specified widths and centres. This can be compared with the density or potential methods in pattern recognition (see Section 33.2.5). [Pg.681]

A quick estimate of the overall column efficiency can be obtained from the correlation given by O Connell (1946), which is shown in Figure 11.13. The overall column efficiency is correlated with the product of the relative volatility of the light key component (relative to the heavy key) and the molar average viscosity of the feed, estimated at the average column temperature. The correlation was based mainly on data obtained with hydrocarbon systems, but includes some values for chlorinated solvents and water-alcohol mixtures. It has been found to give reliable estimates of the overall column efficiency for hydrocarbon systems and can be used to make an approximate estimate of the efficiency for other systems. The method takes no account of the plate design parameters and includes only two physical property variables. [Pg.550]

Table 3 describes the main parts of an environmental risk assessment (ERA) that are based on the two major elements characterisation of exposure and characterisation of effects [27, 51]. ERA uses a combination of exposure and effects data as a basis for assessing the likelihood and severity of adverse effects (risks) and feeds this into the decision-making process for managing risks. The process of assessing risk ranges from the simple calculation of hazard ratios to complex utilisation of probabilistic methods based on models and/or measured data sets. Setting of thresholds such as EQS and quality norms (QN) [27] relies primarily on... [Pg.406]


See other pages where Feed main methods is mentioned: [Pg.117]    [Pg.313]    [Pg.648]    [Pg.485]    [Pg.217]    [Pg.376]    [Pg.513]    [Pg.17]    [Pg.276]    [Pg.703]    [Pg.87]    [Pg.236]    [Pg.167]    [Pg.537]    [Pg.417]    [Pg.201]    [Pg.1785]    [Pg.130]    [Pg.141]    [Pg.219]    [Pg.786]    [Pg.459]    [Pg.75]    [Pg.94]    [Pg.24]    [Pg.162]    [Pg.572]    [Pg.8]    [Pg.151]    [Pg.224]    [Pg.51]    [Pg.323]    [Pg.147]    [Pg.222]    [Pg.173]    [Pg.247]    [Pg.88]    [Pg.226]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Feeding method

Main 3 methods

© 2024 chempedia.info