Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Feed benzene alkylation

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

Wax Cracking. One or more wax-cracked a-olefin plants were operated from 1962 to 1985 Chevron had two such plants at Richmond, California, and Shell had three in Europe. The wax-cracked olefins were of limited commercial value because they contained internal olefins, branched olefins, diolefins, aromatics, and paraffins. These were satisfactory for feed to alkyl benzene plants and for certain markets, but unsatisfactory for polyethylene comonomers and several other markets. Typical distributions were C 33% C q, 7% 25% and 35%. Since both odd and... [Pg.441]

Continuous benzene alkylation was conducted in a reactive distillation column of the type illustrated in Figure 1. The process unit comprises the following principal elements a double column of solid catalyst 32, packing columns above and below the catalyst bed, a liquid reboiler 42 fitted with a liquid bottoms product takeoff 44, a condenser 21 fitted with a water collection and takeoff, and a feed inlet... [Pg.329]

Acid sites were shown to be located in the three-pore system of protonated samples (HMWW), and methods were recently proposed for determining the distribution of these sites as well as their respective role in o-, m-, and p-xylene transformations. While xylene transformation was shown to occur in the three locations, benzene alkylation with ethylene was catalyzed by the acidic sites of the external hemicups only. Indeed, the activity for this reaction is completely suppressed by adding a base molecule (collidine) to the feed that is too bulky to enter the inner micropores. Moreover, adsorption experiments show that collidine does not influence the rate of ethylbenzene adsorption, so that the suppression of alkylation activity was not caused by pore mouth blocking. ... [Pg.242]

Mitsubishi Petrochemical Co. Benzene Alkyl-containing hydrocarbons Easy and stable operation without catalyst. Hydrodealkylation of feeds 7 1992... [Pg.127]

The Alkar process, introduced by UOP m 1958 and using BF3/AI2O3 as a catalyst, is likewise operated in the liquid phase. Alkylation in this process occurs at 120 to 150 °C, while transalkylation is carried out in an additional reactor at temperatures of from 170 to 180 °C and a pressure of from 35 to over 100 bar. For this process, the water content of the feed benzene must be reduced to 2 to 3 ppm, since the water reacts with BF3 to form volatile boroxyfluorides, which are concentrated in the recycled benzene. [Pg.136]

Another method to remove benzene is to react it with propylene or ethylene (benzene alkylation) to produce propylbenzene (cumene) or ethylbenzene. Commercial benzene alkylation processes in the chemical industry have been known for many years. Typically these processes require fairly pure benzene and ethylene feed. The shape selective ZMS-5 catalyst is used as a basis for ethylbenzene synthesis in the Mobil-Badger process (Chen et. al, 1989). ZSM-5 is very selective in this process as a result this process is currently used in the chemical industry to produce about 25% of world s ethylbenzene. Currently there are 12 operating Mobil-Badger EB units including a recent Shell Chemical unit which uses FCC off-gas as the ethylene feedstock source. [Pg.159]

For the refiner, the reduction in benzene concentration to 3% is not a major problem it is achieved by adjusting the initial point of the feed to the catalytic reformers and thereby limiting the amount of benzene precursors such as cyclohexane and Cg paraffins. Further than 3% benzene, the constraints become very severe and can even imply using specific processes alkylation of benzene to substituted aromatics, separation, etc. [Pg.258]

For example, ia the iadustriaHy important alkylation of benzene with ethylene to ethylbenzene, polyethylbenzenes are also produced. The overall formation of polysubstituted products is minimized by recycling the higher ethylation products for the ethylation of fresh benzene (14). By adding the calculated equiUbrium amount of polyethylbenzene to the benzene feed, a high conversion of ethylene to monoethylbenzene can be achieved (15) (see also... [Pg.552]

Alkylator Feed heater Transalkylator Benzene column... [Pg.479]

Catalytic Reforming. Worldwide, approximately 30% of commercial benzene is produced by catalytic reforming, a process ia which aromatic molecules are produced from the dehydrogenation of cycloparaffins, dehydroisomerization of alkyl cyclopentanes, and the cycHzation and subsequent dehydrogenation of paraffins (36). The feed to the catalytic reformer may be a straight-mn, hydrocracked, or thermally cracked naphtha fraction ia the... [Pg.40]

Although benzene prices have escalated in recent years, a concurrent need for butenes for use in alkylates for motor fuel has also increased and butane prices have also escalated. As a result, a search for alternative feedstocks began and Amoco Chemical Co. commercialized a process in 1977 to produce maleic anhydride from butane. A plant in JoHet came on-stream in 1977 with a capacity of 27,000 t/yr (135,136). No new plants have been built in the United States based on butenes since the commercialization of butane to maleic anhydride technology. In Europe and particularly in Japan, however, where butane is in short supply and needs for butenes as alkylation feed are also much less, butenes may become the dominant feedstock (see Maleic anhydride). [Pg.374]

Toluene alkylation with isopropyl alcohol was chosen as the test reaction as we can follow in a detail the effect of zeolite structural parameters on the toluene conversion, selectivity to cymenes, selectivity to para-cymene, and isopropyl/n-propyl ratio. It should be stressed that toluene/isopropyl alcohol molar ratio used in the feed was 9.6, which indicates the theoretical toluene conversion around 10.4 %. As you can see from Fig. 2 conversion of toluene over SSZ-33 after 15 min of T-O-S is 21 %, which is almost two times higher than the theoretical toluene conversion for alkylation reaction. The value of toluene conversion over SSZ-33 is influenced by a high rate of toluene disproportionation. About 50 % of toluene converted is transformed into benzene and xylenes. Toluene conversion over zeolites Beta and SSZ-35 is around 12 %, which is due to a much smaller contribution of toluene disproportionation to the overall toluene conversion. A slight increase in toluene conversion over ZSM-5 zeolite is connected with the fact that desorption and transport of products in toluene alkylation with isopropyl alcohol is the rate controlling step of this reaction [9]... [Pg.277]

Ethylbenzene is a high volume petrochemical used as the feed stock for the production of styrene via dehydrogenation. Ethylbenzene is currently made by ethylene alkylation of benzene and can be purified to 99.9%. Ethylbenzene and styrene plants are usually built in a single location. There is very little merchant sale of ethylbenzene, and styrene production is about 30x10 t/year. For selective adsorption to be economically competitive on this scale, streams with sufficiently high concentration and volume of ethylbenzene would be required. Hence, although technology has been available for ethylbenzene extraction from mixed xylenes, potential commercial opportunities are limited to niche applications. [Pg.244]

Cumene is an important intermediate in the manufacture of phenol and acetone. The feed materials are benzene and propylene. This is a Friedel-Crafts alkylation reaction catalyzed by solid phosphoric acid at 175-225 °C and 400-600 psi. The yield is 97% based on benzene and 92% on propylene. Excess benzene stops the reaction at the monoalkylated stage and prevents the polymerization of propylene. The benzene propylene ratio is 8-10 1. [Pg.171]

The linear olefins are used in the production of biodegradable detergents. The Cq to cuts are fed to alkylation units where the olefins react with benzene to form alkylbenzenes which are subsequently sulphonated. The paraffins present in the feed pass through unconverted. These are then chlorinated and used as plasticizers. The linear olefins can also be converted to linear aldehydes and alcohols by hydroformylation. [Pg.30]

The synthetic production of benzene generally involves lire de-alkylation of toluene. In one non-catalyfic process, a hydrogen-rich gas is mixed with liquid toluene feed and preheated prior to charging to the reactor. Toluene reacts with Hie hydrogen to form benzene and methane. The reaction is exothermic Operating conditions approximate 500 1000 psi and 595-760 T. The process provides about 98% yield of benzene. The toluene is recycled. [Pg.191]

Ethylbenzene is manufactured by the alkylation process from ethylene and benzene feeds. The catalyst employed has mostly been aluminum chloride with a small addition of ethyl chloride promoter. Normally, aluminum chloride is somewhat corrosive and causes relatively high maintenance on the equipment. [Pg.183]

Paushkin and Topchiev also used H3P()4-BF3 at room temperature to alkylate benzene with olefins (287,402). For alkylation of benzene with alcohols, temperatures of 90-97° and a feed mole ratio of 0.5 alcohol 1.0 benzene 0.5 catalyst were recommended (394). In a recent study (400a) these authors supplemented their previously published views (396) concerning the properties of boron fluoride complexes with phosphoric acid, alcohols, and sulfuric acid as catalysts. Data on the electroconductivity of these catalysts was correlated with their activity in alkylation of isobutane and it was concluded (400a) that the acid ion concentration did not affect the alkylation or polymerization reactions over these catalysts, and therefore the carbonium ion mechanism was not applicable. [Pg.287]

For a fresh catalyst, no carbon and hydrogen exist on its surface. With benzene as the reactant, hydrogen/carbon (molar) is close to unity. Under the same temperature and pressure, coke formation for the ethylene feeding is serious. With the Y-type zeolite, when the temperature increases in the gas phase alkylation, the coke is easily formed, with its concentration on the catalyst surface also high. The same result also appear for the LP alkylation after 14 hours, while the coke concentration in the SCFP alkylation is low even after 55 hours. [Pg.154]


See other pages where Feed benzene alkylation is mentioned: [Pg.480]    [Pg.332]    [Pg.709]    [Pg.332]    [Pg.480]    [Pg.480]    [Pg.52]    [Pg.477]    [Pg.478]    [Pg.479]    [Pg.363]    [Pg.275]    [Pg.330]    [Pg.334]    [Pg.429]    [Pg.469]    [Pg.512]    [Pg.517]    [Pg.518]    [Pg.8]    [Pg.265]    [Pg.175]    [Pg.23]    [Pg.192]    [Pg.99]    [Pg.227]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Alkylated benzene

Benzene alkylation

Benzenes alkyl

© 2024 chempedia.info