Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty substrates

Stimulation of the intra- and inter-tissue triacylglycerol/ fatty substrate cycles results in better control of the... [Pg.419]

Metathesis has been applied in oleochemistry for many years, but only fairly recently technical realization comes within reach [33, 34]. As typical catalysts, ruthenium carbene complexes of the Grubbs type are applied because of their very high activity (turnover numbers up to 200 000). In principle, oleochemical metathesis can be divided into two different types in self-metathesis the same fatty substrate reacts with itself and in cross-metathesis a fatty substrate reacts with, for example, a petrochemical alkene. The simplest case, the self-metathesis of methyl oleate forms 9-octadecene and dimethyl 9-octadecenedioate. The resulting diester can be used along with diols for the production of special, comparatively hydrophobic, polyesters. An interesting example of cross-metathesis is the reaction of methyl oleate with an excess of ethene, so-called ethenolysis. This provides two produds, each with a terminal double bond, 1-decene and methyl 9-decenoate (Scheme 3.3). [Pg.80]

Sierra, G. 1957. A Simple Method for the Detection of Lipolytic Activity of Micro-Organisms and Some Observations on the Influence of the Contact between Cells and Fatty Substrates. Antonie van Leeuwenhoek 23 (l) 15-22. [Pg.39]

Natali, A., Santoro, D., Brandi, L.S., Faraggiana, D., Ciociaro, D., Pecori, N., Buzz-igoil, G., and Ferrannini, E., Effects of hypercarnitinemia during increased fatty substrate oxidation in man. Metabolism, 42, 594-600, 1993. [Pg.220]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Additives. Because of their versatility, imparted via chemical modification, the appHcations of ethyleneimine encompass the entire additive sector. The addition of PEI to PVC plastisols increases the adhesion of the coatings by selective adsorption at the substrate surface (410). PEI derivatives are also used as adhesion promoters in paper coating (411). The adducts formed from fatty alcohol epoxides and PEI are used as dispersants and emulsifiers (412). They are able to control the viscosity of dispersions, and thus faciHtate transport in pipe systems (413). Eatty acid derivatives of PEI are even able to control the viscosity of pigment dispersions (414). The high nitrogen content of PEIs has a flame-retardant effect. This property is used, in combination with phosphoms compounds, for providing wood panels (415), ceUulose (416), or polymer blends (417,418) with a flame-retardant finish. [Pg.13]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

Lipoxygenase-Catalyzed Oxidations. Lipoxygenase-1 catalyzes the incorporation of dioxygen into polyunsaturated fatty acids possessing a l(Z),4(Z)-pentadienyi moiety to yield ( ),(Z)-conjugated hydroperoxides. A highly active preparation of the enzyme from soybean is commercially available in purified form. From a practical standpoint it is important to mention that the substrate does not need to be in solution to undergo the oxidation. Indeed, the treatment of 28 g/L of linoleic acid [60-33-3] with 2 mg of the enzyme results in (135)-hydroperoxide of linoleic acid in 80% yield... [Pg.349]

CoA dehydrogenase shows absolute specificity for the L-hydroxyacyl isomer of the substrate (Figure 24.16). (o-Hydroxyacyl isomers, which arise mainly from oxidation of unsaturated fatty acids, are handled differently.)... [Pg.788]

In essence, this series of four reactions has yielded a fatty acid (as a CoA ester) that has been shortened by two carbons, and one molecule of acetyl-CoA. The shortened fatty acyl-CoA can now go through another /3-oxidation cycle, as shown in Figure 24.10. Repetition of this cycle with a fatty acid with an even number of carbons eventually yields two molecules of acetyl-CoA in the final step. As noted in the first reaction in Table 24.2, complete /3-oxidation of palmitic acid yields eight molecules of acetyl-CoA as well as seven molecules of FADHg and seven molecules of NADFI. The acetyl-CoA can be further metabolized in the TCA cycle (as we have already seen). Alternatively, acetyl-CoA can also be used as a substrate in amino acid biosynthesis (Chapter 26). As noted in Chapter 23, however, acetyl-CoA cannot be used as a substrate for gluco-neogenesis. [Pg.789]

Succinyl-CoA derived from propionyl-CoA can enter the TCA cycle. Oxidation of succinate to oxaloacetate provides a substrate for glucose synthesis. Thus, although the acetate units produced in /3-oxidation cannot be utilized in glu-coneogenesis by animals, the occasional propionate produced from oxidation of odd-carbon fatty acids can be used for sugar synthesis. Alternatively, succinate introduced to the TCA cycle from odd-carbon fatty acid oxidation may be oxidized to COg. However, all of the 4-carbon intermediates in the TCA cycle are regenerated in the cycle and thus should be viewed as catalytic species. Net consumption of succinyl-CoA thus does not occur directly in the TCA cycle. Rather, the succinyl-CoA generated from /3-oxidation of odd-carbon fatty acids must be converted to pyruvate and then to acetyl-CoA (which is completely oxidized in the TCA cycle). To follow this latter route, succinyl-CoA entering the TCA cycle must be first converted to malate in the usual way, and then transported from the mitochondrial matrix to the cytosol, where it is oxida-... [Pg.793]

Polyunsaturated fatty acids pose a slightly more complicated situation for the cell. Consider, for example, the case of linoleic acid shown in Figure 24.24. As with oleic acid, /3-oxidation proceeds through three cycles, and enoyl-CoA isomerase converts the cA-A double bond to a trans-b double bond to permit one more round of /3-oxidation. What results this time, however, is a cA-A enoyl-CoA, which is converted normally by acyl-CoA dehydrogenase to a trans-b, cis-b species. This, however, is a poor substrate for the enoyl-CoA hydratase. This problem is solved by 2,4-dienoyl-CoA reductase, the product of which depends on the organism. The mammalian form of this enzyme produces a trans-b enoyl product, as shown in Figure 24.24, which can be converted by an enoyl-CoA isomerase to the trans-b enoyl-CoA, which can then proceed normally through the /3-oxidation pathway. Escherichia coli possesses a... [Pg.794]

Although /3-oxidation is universally important, there are some instances in which it cannot operate effectively. For example, branched-chain fatty acids with alkyl branches at odd-numbered carbons are not effective substrates for /3-oxidation. For such species, a-oxidation is a useful alternative. Consider phy-tol, a breakdown product of chlorophyll that occurs in the fat of ruminant animals such as sheep and cows and also in dairy products. Ruminants oxidize phytol to phytanic acid, and digestion of phytanic acid in dairy products is thus an important dietary consideration for humans. The methyl group at C-3 will block /3-oxidation, but, as shown in Figure 24.26, phytanic acid a-hydroxylase places an —OFI group at the a-carbon, and phytanic acid a-oxidase decar-boxylates it to yield pristanie add. The CoA ester of this metabolite can undergo /3-oxidation in the normal manner. The terminal product, isobutyryl-CoA, can be sent into the TCA cycle by conversion to succinyl-CoA. [Pg.796]

FIGURE 24.26 Branched-chain fatty acids are oxidized by o -oxidation, as shown for phytanic acid. The product of the phytanic acid oxidase, pristanic acid, is a suitable substrate for normal /3-oxidation. Isobutyryl-CoA and propionyl-CoA can both be converted to suc-cinyl-CoA, which can enter the TCA cycle. [Pg.797]

In the endoplasmic reticulum of eukaryotic cells, the oxidation of the terminal carbon of a normal fatty acid—a process termed ch-oxidation—can lead to the synthesis of small amounts of dicarboxylic acids (Figure 24.27). Cytochrome P-450, a monooxygenase enzyme that requires NADPH as a coenzyme and uses O, as a substrate, places a hydroxyl group at the terminal carbon. Subsequent oxidation to a carboxyl group produces a dicarboxylic acid. Either end can form an ester linkage to CoA and be subjected to /3-oxidation, producing a... [Pg.797]

Eukaryotic cells face a dilemma in providing suitable amounts of substrate for fatty acid synthesis. Sufficient quantities of acetyl-CoA, malonyl-CoA, and NADPH must be generated in the cytosol for fatty acid synthesis. Malonyl-CoA is made by carboxylation of acetyl-CoA, so the problem reduces to generating sufficient acetyl-CoA and NADPH. [Pg.803]

The acetyl-CoA derived from amino acid degradation is normally insufficient for fatty acid biosynthesis, and the acetyl-CoA produced by pyruvate dehydrogenase and by fatty acid oxidation cannot cross the mitochondrial membrane to participate directly in fatty acid synthesis. Instead, acetyl-CoA is linked with oxaloacetate to form citrate, which is transported from the mitochondrial matrix to the cytosol (Figure 25.1). Here it can be converted back into acetyl-CoA and oxaloacetate by ATP-citrate lyase. In this manner, mitochondrial acetyl-CoA becomes the substrate for cytosolic fatty acid synthesis. (Oxaloacetate returns to the mitochondria in the form of either pyruvate or malate, which is then reconverted to acetyl-CoA and oxaloacetate, respectively.)... [Pg.804]

FIGURE 25.1 The citrate-malate-pyruvate shuttle provides cytosolic acetate units and reducing equivalents (electrons) for fatty acid synthesis. The shuttle collects carbon substrates, primarily from glycolysis but also from fatty acid oxidation and amino acid catabolism. Most of the reducing equivalents are glycolytic in origin. Pathways that provide carbon for fatty acid synthesis are shown in blue pathways that supply electrons for fatty acid synthesis are shown in red. [Pg.804]

This impressive reaction is catalyzed by stearoyl-CoA desaturase, a 53-kD enzyme containing a nonheme iron center. NADH and oxygen (Og) are required, as are two other proteins cytochrome 65 reductase (a 43-kD flavo-protein) and cytochrome 65 (16.7 kD). All three proteins are associated with the endoplasmic reticulum membrane. Cytochrome reductase transfers a pair of electrons from NADH through FAD to cytochrome (Figure 25.14). Oxidation of reduced cytochrome be, is coupled to reduction of nonheme Fe to Fe in the desaturase. The Fe accepts a pair of electrons (one at a time in a cycle) from cytochrome b and creates a cis double bond at the 9,10-posi-tion of the stearoyl-CoA substrate. Og is the terminal electron acceptor in this fatty acyl desaturation cycle. Note that two water molecules are made, which means that four electrons are transferred overall. Two of these come through the reaction sequence from NADH, and two come from the fatty acyl substrate that is being dehydrogenated. [Pg.815]

FIGURE 25.14 The conversion of stearoyl-CoA to oleoyl-CoA in eukaryotes is catalyzed by stearoyl-CoA desaturase in a reaction sequence that also involves cytochrome -65 and cytochrome -65 reductase. Two electrons are passed from NADH through the chain of reactions as shown, and two electrons are also derived from the fatty acyl substrate. [Pg.815]

FIGURE 25.20 Triacylglycerols are formed primarily by the action of acyltransferases on mono- and diacylglycerol. Acyltransferase in E. coli is an integral membrane protein (83 kD) and can utilize either fatty acyl-CoAs or acylated acyl carrier proteins as substrates. It shows a particular preference for palmitoyl groups. Eukaryotic acyltransferases nse only fatty acyl-CoA molecnles as substrates. [Pg.823]

Electrolysis of salts of fatty acids gives free radicals which are capable of reacting with added substrates. For instance, when water-free potassium acetate is electrolyzed in the presence of polymerizing substances (e.g., styrene) methyl groups are incorporated as end groups into the polymer. Goldschmidt et ai. analyzed the products formed in the electrolysis of potassium propionate in propionic acid and showed that they could be accounted for by the following reaction sequence ... [Pg.153]


See other pages where Fatty substrates is mentioned: [Pg.149]    [Pg.6094]    [Pg.101]    [Pg.149]    [Pg.6094]    [Pg.101]    [Pg.12]    [Pg.560]    [Pg.2609]    [Pg.2614]    [Pg.359]    [Pg.383]    [Pg.8]    [Pg.21]    [Pg.172]    [Pg.351]    [Pg.137]    [Pg.529]    [Pg.536]    [Pg.216]    [Pg.295]    [Pg.473]    [Pg.675]    [Pg.681]    [Pg.743]    [Pg.768]    [Pg.789]    [Pg.794]    [Pg.798]    [Pg.815]   
See also in sourсe #XX -- [ Pg.589 , Pg.590 ]




SEARCH



Fatty acid substrates encountered

© 2024 chempedia.info