Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cytochrome c reductases

He/minthosporium (15). The mode of action is considered to be inhibition of the enzyme NADPH-cytochrome C reductase, which results in the generation of free radicals and/or peroxide derivatives of flavin which oxidize adjacent unsaturated fatty acids to dismpt membrane integrity (16) (see Enzyme inhibitors). [Pg.105]

In the third complex of the electron transport chain, reduced coenzyme Q (UQHg) passes its electrons to cytochrome c via a unique redox pathway known as the Q cycle. UQ cytochrome c reductase (UQ-cyt c reductase), as this complex is known, involves three different cytochromes and an Fe-S protein. In the cytochromes of these and similar complexes, the iron atom at the center of the porphyrin ring cycles between the reduced Fe (ferrous) and oxidized Fe (ferric) states. [Pg.685]

Thenoyltrifluoroacetone and carboxin and its derivatives specifically block Complex II, the succinate-UQ reductase. Antimycin, an antibiotic produced by Streptomyees griseus inhibits the UQ-cytochrome c reductase by blocking electron transfer between bn and coenzyme Q in the Q site. Myxothiazol inhibits the same complex by acting at the site. [Pg.699]

Squalene epoxidase, like most enzymes responsible for the later steps of sterol biosynthesis [43, 51], is membrane-bound which makes its purification in native form challenging. The purification is additionally complicated by the presence of a large number of cytochrome P450 and other enzymes that have similar hydro-phobicity and size as squalene epoxidase and are hence difficult to remove [52]. Most studies have been carried out with rat liver microsome squalene epoxidase either partially purified or as a homogenate of the cell membrane fraction. In vitro reconstitution of squalene epoxidase activity is absolutely dependent on molecular oxygen, NADPH, FAD, and NADPH-cytochrome c reductase [52, 53]. In this respect, squalene epoxidase resembles the cytochrome P450 enzymes described... [Pg.370]

To summarize, squalene epoxidase is a flavoprotein capable of catalyzing the insertion of oxygen into the 2,3-double bond of squalene to give 2,3-oxidosqualene, with the second oxygen atom from 02 being reduced to water. The reducing equivalents necessary for this transformation are relayed from NADPH through NADPH-cytochrome c reductase to the flavin cofactor of the epoxidase. [Pg.373]

Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992). Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992).
Sasame, H.A. Ames, M.M. and Nelson, S.D. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain Formation of catechols and reactive catechol metalbolites. Biochem Biophys Res Commun 78 919-926, 1977. [Pg.339]

Reported applications of DST include the crosslinking of ubiquinone cytochrome C reductase (Smith et al., 1978), characterization of the cell surface receptor for colony-stimulating factor (Park et al., 1986), investigation of the Ca+2-, Mg+2-activated ATP of E. coli (Bragg and Hou, 1980), and characterization of human properdin polymers (Farries and Atkinson, 1989). [Pg.244]

Such a process is supposed to occur within the limits of Q-cycle mechanism (Figure 23.2). In accord with this scheme ubihydroquinone reduced dioxygen in Complex III, while superoxide producers in Complex I could be FMN or the FeS center [12]. Zhang et al. [24] also suggested that the Q-cycle mechanism is responsible for the superoxide production by the succinate-cytochrome c reductase in bovine heart mitochondria and that FAD of succinate dehydrogenase is another producer of superoxide. Young et al. [25] concluded that, in addition to Complex III, flavin-containing enzymes and FeS centers are also the sites of superoxide production in liver mitochondria. [Pg.751]

Abnormalities of the respiratoiy chain. These are increasingly identified as the hallmark of mitochondrial diseases or mitochondrial encephalomyopathies [13]. They can be identified on the basis of polarographic studies showing differential impairment in the ability of isolated intact mitochondria to use different substrates. For example, defective respiration with NAD-dependent substrates, such as pyruvate and malate, but normal respiration with FAD-dependent substrates, such as succinate, suggests an isolated defect of complex I (Fig. 42-3). However, defective respiration with both types of substrates in the presence of normal cytochrome c oxidase activity, also termed complex IV, localizes the lesions to complex III (Fig. 42-3). Because frozen muscle is much more commonly available than fresh tissue, electron transport is usually measured through discrete portions of the respiratory chain. Thus, isolated defects of NADH-cytochrome c reductase, or NADH-coenzyme Q (CoQ) reductase suggest a problem within complex I, while a simultaneous defect of NADH and succinate-cytochrome c reductase activities points to a biochemical error in complex III (Fig. 42-3). Isolated defects of complex III can be confirmed by measuring reduced CoQ-cytochrome c reductase activity. [Pg.709]

Defects of complex II. These have not been fully characterized in the few reported patients, and the diagnosis has often been based solely on a decrease of succinate-cytochrome c reductase activity (Fig. 42-3). However, partial complex II deficiency was documented in muscle and cultured fibroblasts from two sisters with clinical and neuroradiological evidence of Leigh s syndrome, and molecular genetic analysis showed that both patients were homozygous for a point mutation in the flavoprotein subunit of the complex [17]. This was the first documentation of a molecular defect in the nuclear genome associated with a respiratory chain disorder. [Pg.710]

Proteins involved in the fundamental structure and function of neurons are decreased in schizophrenia. Several postmortem studies have identified consistent reductions in the expression of mitochondrial associated genes involved in oxidative metabolism, such as cytochrome oxidase and cytochrome C reductase [23], Reduced oxidative metabolism is consistent with evidence of increased brain lactate,... [Pg.883]

The marker enzymes used in this experiment are as follows vanadate-sensitive H+-ATPase (plasma membrane), nitrate-sensitive H+-ATPase or pyrophosphatase (tonoplast), TritonX-100 stimulated-UDPase or IDPase (Golgi complex), antimycin A-insensitive NADPH cytochrome c reductase (ER), and cytochrome c oxidase (mitochondria inner membrane). NADH cytochrome c reductase activity is found to be 10 times higher than NADPH cytochrome c reductase activity. Chlorophyll content can be measured as the chloroplast marker. The chlorophyll content is calculated by the following equation. Before measurement, auto zero is performed at 750 ran. [Pg.164]

Antimycin A-insensitive NADH cytochrome c reductase and cytochrome c oxidase Absorbance plots of OD550 for 1 min need to follow... [Pg.168]

The microsome fractions see Fig. 1) that were prepared from mulberry cortical parenchyma cells were fractionated to 24 or 25 fractions using the 15-50% sucrose linear density gradient centrifugation see Fig. 2). Profiles of the marker enzymes and the protein content are described in Fig. 3. In general, the antimycin A-insensitive cytochrome c reductase activity is exhibited at a lower density than are those of the marker enzymes. The fraction that exhibited the highest antimycin A-insensitive cytochrome c reductase activity for each month was used as the ER-enriched fraction. [Pg.168]

These findings lead to (he conclusion that the reduction of MHb by its reductase requires a natural cofactor, which is abolished during the purification procedure and can be replaced by methylene blue (G5, H22, H23, K8, K14). Since methylene blue and the other effective dyes are redox intermediates, it is obvious that the postulated cofactor interacts in the electron transport sequence of the MHbR reaction (H23). This is confirmed by the finding that oxygen and cytochrome c serve as well as terminal electron acceptor as does MHb (H22, H23, K14). Nevertheless, it had been possible to separate a cytochrome c reductase from MHbR in yeast extracts (A6). [Pg.281]

Disulfoton induced the liver MFO system in animals (Stevens et al. 1973). In the same study, exposure to disulfoton orally for 3 days also increased ethylmorphine N-demethylase and NADPH oxidase activities, but had no effect on NADPH cytochrome c reductase. Thus, the induction of the MFO system required repeated dosing with relatively high doses. Furthermore, these changes are not specific for disulfoton exposure, and these subtle liver effects require invasive techniques in humans to obtain liver tissue for performance of these enzyme assays. [Pg.122]


See other pages where Cytochrome c reductases is mentioned: [Pg.655]    [Pg.105]    [Pg.79]    [Pg.572]    [Pg.681]    [Pg.685]    [Pg.372]    [Pg.311]    [Pg.181]    [Pg.449]    [Pg.27]    [Pg.303]    [Pg.241]    [Pg.186]    [Pg.316]    [Pg.104]    [Pg.200]    [Pg.749]    [Pg.750]    [Pg.753]    [Pg.569]    [Pg.166]    [Pg.167]    [Pg.176]    [Pg.82]    [Pg.84]    [Pg.300]    [Pg.72]    [Pg.95]    [Pg.123]    [Pg.124]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.196 ]

See also in sourсe #XX -- [ Pg.375 ]

See also in sourсe #XX -- [ Pg.149 ]

See also in sourсe #XX -- [ Pg.326 ]

See also in sourсe #XX -- [ Pg.196 ]

See also in sourсe #XX -- [ Pg.1151 ]

See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.284 ]

See also in sourсe #XX -- [ Pg.164 , Pg.230 , Pg.231 ]

See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Cytochrome reductase

© 2024 chempedia.info