Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids saponification

An alternative procedure involves the release of the fatty acids by alkaline hydrolysis (saponification) by refluxing the extracted sample with dilute alcoholic potassium hydroxide for 1 h. After cooling, adding water and acidifying, the fatty acids are extracted into diethyl ether. The methyl esters can then be prepared by treatment with diazomethane, which may also be used directly on free fatty acids. Saponification is less satisfactory, because it is a lengthy procedure and often results in the loss of lipid components. [Pg.433]

Moisture Insoluble Matter Unsaponificable Matter Total MIU Total Fatty Acids Free Fatty Acids Oxidized Fatty Acids Saponification Number Acetone Insolubles Metabolizable Energy Value... [Pg.2965]

Fatty acids Saponification Micelles Surfactant Phospholipids Waxes Steroids Cholesterol... [Pg.762]

The fatty acid composition of oils is determined by the gas-liquid chromatography of the methyl esters of the fatty acids. Saponification (hydrolysis) followed by methylation is a... [Pg.3]

Seed oils were characterized by fatty acid composition as well as bulk and compound-specific isotopic analyses. After fatty acid saponification and derivatization with methanolic sodium hydroxide and methanolic boron trifluoride, the fatty acid composition was assessed by GC-FID equipped with a 30 m Supelcowax-10 column. For the determination of bulk carbon, oxygen and hydrogen composition values in %o VPDB, and values in %o VSMOW), a continuous He-flow... [Pg.129]

Fats are hydrolysed to glycerol and fatty acids by boiling with acids and alkalis, by superheated steam and by the action of lipases. If alkalis are used for hydrolysis, the fatty acids combine with the alkalis to form soaps. Alkaline hydrolysis is therefore sometimes called saponification. [Pg.172]

Potassium and sodium salts of long chain carboxylic acids form micelles that dissolve grease (Section 19 5) and have cleansing properties The carboxylic acids obtained by saponification of fats are called fatty acids... [Pg.853]

Animal fats and vegetable oils are triacylglycerols, or triesters, formed from the reaction of glycerol (1,2, 3-propanetriol) with three long-chain fatty acids. One of the methods used to characterize a fat or an oil is a determination of its saponification number. When treated with boiling aqueous KOH, an ester is saponified into the parent alcohol and fatty acids (as carboxylate ions). The saponification number is the number of milligrams of KOH required to saponify 1.000 g of the fat or oil. In a typical analysis, a 2.085-g sample of butter is added to 25.00 ml of 0.5131 M KOH. After saponification is complete, the excess KOH is back titrated with 10.26 ml of0.5000 M HCl. What is the saponification number for this sample of butter ... [Pg.363]

Eats and oils from a number of animal and vegetable sources are the feedstocks for the manufacture of natural higher alcohols. These materials consist of triglycerides glycerol esterified with three moles of a fatty acid. The alcohol is manufactured by reduction of the fatty acid functional group. A small amount of natural alcohol is also obtained commercially by saponification of natural wax esters of the higher alcohols, such as wool grease. [Pg.446]

Free Fatty Acid and Saponification Value. High concentrations of free fatty acid are undesirable in cmde triglyceride oils because they... [Pg.133]

In general, the presence of fatty acid groups in the phosphoHpid molecule permits reactions such as saponification, hydrolysis, hydrogenation, halogenation, sulfonation, phosphorylation, elaidinization, and ozonization (6). [Pg.99]

Hydrolysis. The first effect of either acid hydrolysis or alkaline hydrolysis (saponification) is the removal of the fatty acids. The saponification value of commercial lecithin is 196. Further decomposition into glycerol, phosphoric acid, and head groups (ie, choline, ethanolamine, etc) may foUow prolonged heating. Lecithin may also be hydrolyzed by enzymes. [Pg.99]

Carboxylate soaps are most commonly formed through either direct or indirect reaction of aqueous caustic soda, ie, alkaH earth metal hydroxides such as NaOH, with fats and oils from natural sources, ie, triglycerides. Fats and oils are typically composed of both saturated and unsaturated fatty acid molecules containing between 8 and 20 carbons randomly linked through ester bonds to a glycerol [56-81-5] backbone. Overall, the reaction of caustic with triglyceride yields glycerol (qv) and soap in a reaction known as saponification. The reaction is shown in equation 1. [Pg.150]

Saponification can proceed direcdy as a one-step reaction as shown above, or it can be achieved indirectly by a two-step reaction where the intermediate step generates fatty acids through simple hydrolysis of the fats and oils and the finishing step forms soap through the neutralization of the fatty acid with caustic soda. There are practical considerations which must be addressed when performing this reaction on a commercial scale. [Pg.150]

Commercially, soap is most commonly produced through either the direct saponification of fats and oils with caustic or the hydrolysis of fats and oils to fatty acids followed by stoichiometric (equal molar) neutralization with caustic. Both of these approaches yield workable soap in the form of concentrated soap solutions (- 70% soap). This concentration of soap is the target on account of the aqueous-phase properties of soap as well as practical limitations resulting from these properties. Hence, before discussing the commercial manufacturing of soap, it is imperative to understand the phase properties of soap. [Pg.151]

Fatty Acid Neutralization. Another approach to produce soap is through the neutralization of fatty acids with caustic. This approach requires a stepwise process where fatty acids are produced through the hydrolysis of fats and oils by water, followed by subsequent neutralization with appropriate caustics. This approach has a number of inherent benefits over the saponification process. [Pg.154]

Provitamin D. Provitamin is made from cholesterol, and its commercial production begias with the isolation of cholesterol from one of its natural sources. Cholesterol occurs ia many animals, and is generally extracted from wool grease obtained by washing wool after it is sheared from sheep. This grease is a mixture of fatty-acid esters, which contain ca 15 wt % cholesterol. The alcohol fraction is obtained after saponification, and the cholesterol is separated, usually by complexation with 2iac chloride, followed by decomplexation and crystallisation. Cholesterol can also be extracted from the spiaal cords and brains of animals, especially catde, and from fish oils. [Pg.127]

The major components of camauba wax are aHphatic and aromatic esters of long-chain alcohols and acids, with smaller amounts of free fatty acids and alcohols, and resins. Camauba wax is very hard, with a penetration of 2 dmm at 25°C and only 3 dmm at 43.3°C. Camauba also has one of the higher melting points for the natural waxes at 84°C, with a viscosity of 3960 rare]/s at 98.9°C, an acid number of 8, and a saponification number of 80. [Pg.314]

Acylglycerols can be hydrolyzed by heating with acid or base or by treatment with lipases. Hydrolysis with alkali is called saponification and yields salts of free fatty acids and glycerol. This is how soap (a metal salt of an acid derived from fat) was made by our ancestors. One method used potassium hydroxide potash) leached from wood ashes to hydrolyze animal fat (mostly triacylglycerols). (The tendency of such soaps to be precipitated by Mg and Ca ions in hard water makes them less useful than modern detergents.) When the fatty acids esterified at the first and third carbons of glycerol are different, the sec-... [Pg.242]

Methyl Malonate.—This ester is an artificially prepared body, having a fruity odour, somewhat similar to the above-described esters of the fatty acids. It has the formula CH2(C02CHg)2, and boils at 181°. It may be prepared by treating potassium cyan-acetate with methyl alcohol and hydrochloric acid. On saponification with alcoholic potash it yields malonic acid, which melts at 132°, and serves well for the identification of the ester. [Pg.164]

Terpinyl acetate in the absence of esters of high molecular weight, or ethyl esters of the fatty acids of coconut oil, is indicated by a difference to be observed in the apparent ester value by different times of saponification. This ester is far more resistant to the action of caustic alkali than is linalyl acetate, and requires two hours at least for complete saponification. Hence, if the oil shows a difference in the saponification value in thirty minutes and in two hours, which amounts to more than from 1 to 2, terpinyl acetate is almost certainly present. The following table shows the effect of this partial-saponrfication on the two esters and on adulterated oils —... [Pg.314]

Saponification deterioration by softening of paint film caused by action of aqueous alkali, resulting from cathodic protection at excessively high current densities, on the fatty-acid constituents of the film. [Pg.1377]

Discussion. For oils and fats, which are esters of long-chain fatty acids, the saponification value (or number) is defined as the number of milligrams of potassium hydroxide which will neutralise the free fatty acids obtained from the hydrolysis of 1 g of the oil or fat. This means that the saponification number is inversely proportional to the relative molecular masses of the fatty acids obtained from the esters. A typical reaction from the hydrolysis of a glyceride is ... [Pg.308]

The fatty adds commonly encountered in biological systems are straight chained alkanoic or alkenoic adds, containing an even number of carbon atoms (usually Ch-Ch). natural n Senera / these fatty adds can be produced readily by extraction of the lipids from sources natural sources and saponifying the neutral triglycerides. This is satisfactory providing a mixture of fatty acids is acceptable. Purification of spedfic fatty adds from the saponification mixture increases the costs considerably. [Pg.333]


See other pages where Fatty acids saponification is mentioned: [Pg.707]    [Pg.733]    [Pg.707]    [Pg.733]    [Pg.443]    [Pg.448]    [Pg.125]    [Pg.134]    [Pg.135]    [Pg.136]    [Pg.347]    [Pg.347]    [Pg.127]    [Pg.147]    [Pg.89]    [Pg.150]    [Pg.154]    [Pg.339]    [Pg.351]    [Pg.261]    [Pg.262]    [Pg.262]    [Pg.521]    [Pg.163]    [Pg.168]    [Pg.337]    [Pg.1064]    [Pg.1298]   
See also in sourсe #XX -- [ Pg.476 , Pg.477 ]




SEARCH



Acid Saponification

Saponification

Saponification saturated fatty acid

© 2024 chempedia.info