Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids, radical-mediated

Lipid peroxidation is a radical-mediated chain reaction resulting in the degradation of polyunsaturated fatty acids (PUFAs) that contain more than two covalent carbon-carbon double bonds (reviewed by Esterbauer et al., 1992). One of the major carriers of plasma lipids is LDL, a spherical molecule with a molecular weight of 2.5x10 . A single LDL particle contains 1300 PUFA molecules (2700 total fatty-acid molecules) and is... [Pg.102]

Peroxyl radicals are the species that propagate autoxidation of the unsaturated fatty acid residues of phospholipids (50). In addition, peroxyl radicals are intermediates in the metabolism of certain drugs such as phenylbutazone (51). Epoxidation of BP-7,8-dihydrodiol has been detected during lipid peroxidation induced in rat liver microsomes by ascorbate or NADPH and during the peroxidatic oxidation of phenylbutazone (52,53). These findings suggest that peroxyl radical-mediated epoxidation of BP-7,8-dihydrodiol is general and may serve as the prototype for similar epoxidations of other olefins in a variety of biochemical systems. In addition, peroxyl radical-dependent epoxidation of BP-7,8-dihydrodiol exhibits the same stereochemistry as the arachidonic acid-stimulated epoxidation by ram seminal vesicle microsomes. This not only provides additional... [Pg.320]

LOX-catalyzed oxidation of LDL has been studied in subsequent studies [26,27]. Belkner et al. [27] showed that LOX-catalyzed LDL oxidation was not restricted to the oxidation of lipids but also resulted in the cooxidative modification of apoproteins. It is known that LOX-catalyzed LDL oxidation is regio- and enantio-specific as opposed to free radical-mediated lipid peroxidation. In accord with this proposal Yamashita et al. [28] showed that LDL oxidation by 15-LOX from rabbit reticulocytes formed hydroperoxides of phosphatidylcholine and cholesteryl esters regio-, stereo-, and enantio-specifically. Sigari et al. [29] demonstrated that fibroblasts with overexpressed 15-LOX produced bioactive minimally modified LDL, which is probably responsible for LDL atherogenic effect in vivo. Ezaki et al. [30] found that the incubation of LDL with 15-LOX-overexpressed fibroblasts resulted in a sharp increase in the cholesteryl ester hydroperoxide level and a lesser increase in free fatty acid hydroperoxides. [Pg.809]

Belkner et al. [32] demonstrated that 15-LOX oxidized preferably LDL cholesterol esters. Even in the presence of free linoleic acid, cholesteryl linoleate continued to be a major LOX substrate. It was also found that the depletion of LDL from a-tocopherol has not prevented the LDL oxidation. This is of a special interest in connection with the role of a-tocopherol in LDL oxidation. As the majority of cholesteryl esters is normally buried in the core of a lipoprotein particle and cannot be directly oxidized by LOX, it has been suggested that LDL oxidation might be initiated by a-tocopheryl radical formed during the oxidation of a-tocopherol [33,34]. Correspondingly, it was concluded that the oxidation of LDL by soybean and recombinant human 15-LOXs may occur by two pathways (a) LDL-free fatty acids are oxidized enzymatically with the formation of a-tocopheryl radical, and (b) the a-tocopheryl-mediated oxidation of cholesteryl esters occurs via a nonenzymatic way. Pro and con proofs related to the prooxidant role of a-tocopherol were considered in Chapter 25 in connection with the study of nonenzymatic lipid oxidation and in Chapter 29 dedicated to antioxidants. It should be stressed that comparison of the possible effects of a-tocopherol and nitric oxide on LDL oxidation does not support importance of a-tocopherol prooxidant activity. It should be mentioned that the above data describing the activity of cholesteryl esters in LDL oxidation are in contradiction with some earlier results. Thus in 1988, Sparrow et al. [35] suggested that the 15-LOX-catalyzed oxidation of LDL is accelerated in the presence of phospholipase A2, i.e., the hydrolysis of cholesterol esters is an important step in LDL oxidation. [Pg.810]

The brain has a number of characteristics that make it especially susceptible to free- radical-mediated injury. Brain lipids are highly enriched in polyunsaturated fatty acids and many regions of the brain, for example, the substantia nigra and the striatum, have high concentrations of iron. Both these factors increase the susceptibility of brain cell membranes to lipid peroxidation. Because the brain is critically dependent on aerobic metabolism, mitochondrial respiratory activity is higher than in many other tissues, increasing the risk of free radical Teak from mitochondria conversely, free radical damage to mitochondria in brain may be tolerated relatively poorly because of this dependence on aerobic metabolism. [Pg.566]

Polyunsaturated fatty acids are oxidized by enzymatic and nonenzymatic pathways. Nonenzymatic oxidation is a free-radical mediated peroxidation. It is a chain reaction providing a continuous supply of free radicals that initiate further peroxidation. The whole process can be depicted as follows [21] ... [Pg.474]

ROS can cause profound damage to lipids within cell membranes through lipid peroxidation. The mechanism involves free radical-mediated abstraction of a hydrogen atom from polyunsaturated fatty adds, such as linoleic acid (Scheme 3.11). A methylene group located between two double bonds in such a... [Pg.66]

Desaturation of alkyl groups. This novel reaction, which converts a saturated alkyl compound into a substituted alkene and is catalyzed by cytochromes P-450, has been described for the antiepileptic drug, valproic acid (VPA) (2-n-propyl-4-pentanoic acid) (Fig. 4.29). The mechanism proposed involves formation of a carbon-centered free radical, which may form either a hydroxy la ted product (alcohol) or dehydrogenate to the unsaturated compound. The cytochrome P-450-mediated metabolism yields 4-ene-VPA (2-n-propyl-4pentenoic acid), which is oxidized by the mitochondrial p-oxidation enzymes to 2,4-diene-VPA (2-n-propyl-2, 4-pentadienoic acid). This metabolite or its Co A ester irreversibly inhibits enzymes of the p-oxidation system, destroys cytochrome P-450, and may be involved in the hepatotoxicity of the drug. Further metabolism may occur to give 3-keto-4-ene-VPA (2-n-propyl-3-oxo-4-pentenoic acid), which inhibits the enzyme 3-ketoacyl-CoA thiolase, the terminal enzyme of the fatty acid oxidation system. [Pg.92]

The finding that water-soluble flavonoids could exert their beneficial properties at the hydrophobic portion of the membrane was also observed in in vivo studies and in cells in culture. For example, erythrocytes obtained from animals fed a flavanol- and procyanidin-rich meal showed reduced susceptibility to free-radical-mediated hemolysis [Zhu et al., 2002]. Consistently, we demonstrated that procyanidin hexamers, which interact with membranes but would not be internalized, protected Caco-2 cells from AMVN- and bile-induced oxidation [Erlejman et al., 2006]. When liposomes were preincubated with a series of flavonoids with diverse hydrophobicity, not only hydrophobic flavonoids prevented AMVN-mediated lipid oxidation but also the more hydrophilic ones [Erlejman et al., 2004]. Similarly to what was previously found in liposomes, the protective effects of flavonoids against AMVN-supported oxidation was strongly associated with their capacity to prevent membrane disruption by detergents, supporting the hypothesis of a physical protection of membranes by preventing oxidants to reach fatty acids. [Pg.123]

Fang X, Jin F, Jin H, von Sonntag C (1998) Reaction of the superoxide radical with the A/-centered radical derived from N-acetyltryptophan methyl ester. J Chem Soc Perkin Trans 2 259-263 Ferreri C, Costantino C, Landi L, Mulazzani QG, Chatgilialoglu C (1999) The thiyl radical-mediated isomerisation of c/s-monounsaturated fatty acid residues in phospholipids a novel path of membrane damage Chem Commun 407-408... [Pg.154]

The lipoxygenase system also competes for released arachidonic acid in a way that seems to be tissue-selective, giving rise to hydroperoxy fatty acids (HPETE) which can be converted into leukotrienes or reduced to hydroxy fatty acid (HETE) products [115]. The basic scheme for these metabolic conversions involving arachidonic acid is presented in Figure 5.2. Both of the main enzymatic pathways of arachidonic acid metabolism are thought to involve free-radical-mediated reactions [108] and the antioxidant capacity of vitamin E could therefore allow the vitamin to modify the products of these pathways. [Pg.261]


See other pages where Fatty acids, radical-mediated is mentioned: [Pg.1519]    [Pg.498]    [Pg.30]    [Pg.368]    [Pg.40]    [Pg.45]    [Pg.179]    [Pg.786]    [Pg.805]    [Pg.349]    [Pg.353]    [Pg.29]    [Pg.261]    [Pg.67]    [Pg.945]    [Pg.951]    [Pg.952]    [Pg.270]    [Pg.945]    [Pg.951]    [Pg.952]    [Pg.787]    [Pg.806]    [Pg.75]    [Pg.90]    [Pg.95]    [Pg.152]    [Pg.200]    [Pg.1204]    [Pg.576]    [Pg.219]    [Pg.220]    [Pg.269]    [Pg.57]    [Pg.276]    [Pg.205]   


SEARCH



Acid radicals

Acidic radicals

Radical mediated

© 2024 chempedia.info