Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acid transport into mitochondrial matrix

The most important process in the degradation of fatty acids is p-oxidation—a metabolic pathway in the mitochondrial matrix (see p. 164). initially, the fatty acids in the cytoplasm are activated by binding to coenzyme A into acyl CoA [3]. Then, with the help of a transport system (the carnitine shuttle [4] see p. 164), the activated fatty acids enter the mitochondrial matrix, where they are broken down into acetyl CoA. The resulting acetyl residues can be oxidized to CO2 in the tricarboxylic acid cycle, producing reduced... [Pg.162]

All of the other enzymes of the /3-oxidation pathway are located in the mitochondrial matrix. Short-chain fatty acids, as already mentioned, are transported into the matrix as free acids and form the acyl-CoA derivatives there. However, long-chain fatty acyl-CoA derivatives cannot be transported into the matrix directly. These long-chain derivatives must first be converted to acylearnitine derivatives, as shown in Figure 24.9. Carnitine acyltransferase I, located on the outer side of the inner mitochondrial membrane, catalyzes the formation of... [Pg.782]

Production of Malonyl-CoA for the Fatty Acid Biosynthesis. Acetyl-CoA serves as a substrate in the production of malonyl-CoA. There are several routes by which acetyl-CoA is supplied to die cytoplasm. One route is the transfer of acetyl residues from the mitochondrial matrix across the mitochondrial membrane into the cyto-plasm. This process resembles a fatty acid transport and is likewise effected with the participation of carnitine and the enzyme acetyl-CoA-camitine transferase. Another route is the production of acetyl-CoA from citrate. Citrate is delivered from the mitochondria and undergoes cleavage in the cytoplasm by the action of the enzyme ATP-citrate lyase ... [Pg.200]

FIGURE17-6 Fatty acid entry into mitochondria via the acyl-carnitine/ carnitine transporter. After fatty acyl-carnitine is formed at the outer membrane or in the intermembrane space, it moves into the matrix by facilitated diffusion through the transporter in the inner membrane. In the matrix, the acyl group istransferred to mitochondrial coenzyme... [Pg.636]

Carititine (3-hydroxy,4-AT-trimethylaminobutyric acid) has a central role in the transport of fatty acids across the mitochondrial membrane for p -oxidation. At the outer face of the outer mitochondrial membrane, carnitine acyltransferase I catalyzes the reaction shown in Figure 14.1, the transfer of fatty acids from coenzyme A (CoA) to form acyl carnitine esters that cross into the mitochondrial matrix. At the timer face of the inner mitochondrial membrane, carnitine acyltransferase II catalyzes the reverse reaction. [Pg.385]

The second metabolic pathway which we have chosen to describe is the tricarboxylic acid cycle, often referred to as the Krebs cycle. This represents the biochemical hub of intermediary metabolism, not only in the oxidative catabolism of carbohydrates, lipids, and amino acids in aerobic eukaryotes and prokaryotes, but also as a source of numerous biosynthetic precursors. Pyruvate, formed in the cytosol by glycolysis, is transported into the matrix of the mitochondria where it is converted to acetyl CoA by the multi-enzyme complex, pyruvate dehydrogenase. Acetyl CoA is also produced by the mitochondrial S-oxidation of fatty acids and by the oxidative metabolism of a number of amino acids. The first reaction of the cycle (Figure 5.12) involves the condensation of acetyl Co and oxaloacetate to form citrate (1), a Claisen ester condensation. Citrate is then converted to the more easily oxidised secondary alcohol, isocitrate (2), by the iron-sulfur centre of the enzyme aconitase (described in Chapter 13). This reaction involves successive dehydration of citrate, producing enzyme-bound cis-aconitate, followed by rehydration, to give isocitrate. In this reaction, the enzyme distinguishes between the two external carboxyl groups... [Pg.102]

The answer is c. (Murray, pp 123-148. Scriver, pp 2367-2424. Sack, pp 159-175. Wilson, pp 287-317.) The most likely cause of the symptoms observed is carnitine deficiency. Under normal circumstances, long-chain fatty acids coming into muscle cells are activated as acyl coenzyme A and transported as acyl carnitine across the inner mitochondrial membrane into the matrix. A deficiency in carnitine, which is normally synthesized in the liver, can be genetic but it is also observed in preterm babies with liver problems and dialysis patients. Blockage of the transport of long-chain fatty acids into mitochondria not only deprives the patient of energy production, but also disrupts the structure of the muscle cell with the accumulation of lipid droplets. Oral dietary supplementation usually can effect a cure. Deficiencies in the carnitine acyltransferase enzymes I and II can cause similar symptoms. [Pg.191]

The enzymes that catalyze the p-oxidation of fatty acids are located in the matrix space of the mitochondria. Special transport mechanisms are required to bring fatty acid molecules into the mitochondrial matrix. Once inside, the fatty acids are degraded by the reactions of p-oxidation. As we will see, these reactions interact with oxidative phosphorylation and the citric acid cycle to produce ATP. [Pg.696]

COMPARTMENTALIZED PYRUVATE CARBOXYLASE DEPENDS ON METABOLITE CONVERSION AND TRANSPORT The second interesting feature of pyruvate carboxylase is that it is found only in the matrix of the mitochondria. By contrast, the next enzyme in the gluconeogenic pathway, PEP carboxykinase, may be localized in the cytosol or in the mitochondria or both. For example, rabbit liver PEP carboxykinase is predominantly mitochondrial, whereas the rat liver enzyme is strictly cytosolic. In human liver, PEP carboxykinase is found both in the cytosol and in the mitochondria. Pyruvate is transported into the mitochondrial matrix, where it can be converted to acetyl-CoA (for use in the TCA cycle) and then to citrate (for fatty acid synthesis see Figure 25.1). /Uternatively, it may be converted directly to 0/ A by pyruvate carboxylase and used in glu-... [Pg.746]

The acetyl-CoA derived from amino acid degradation is normally insufficient for fatty acid biosynthesis, and the acetyl-CoA produced by pyruvate dehydrogenase and by fatty acid oxidation cannot cross the mitochondrial membrane to participate directly in fatty acid synthesis. Instead, acetyl-CoA is linked with oxaloacetate to form citrate, which is transported from the mitochondrial matrix to the cytosol (Figure 25.1). Here it can be converted back into acetyl-CoA and oxaloacetate by ATP-citrate lyase. In this manner, mitochondrial acetyl-CoA becomes the substrate for cytosolic fatty acid synthesis. (Oxaloacetate returns to the mitochondria in the form of either pyruvate or malate, which is then reconverted to acetyl-CoA and oxaloacetate, respectively.)... [Pg.804]

Transport of Fatty Acid Acyl Groups into the Mitochondrial Matrix 113... [Pg.107]

Fatty acid utilized by muscle may arise from storage triglycerides from either adipose tissue depot or from lipid stores within the muscle itself. Lipolysis of adipose triglyceride in response to hormonal stimulation liberates free fatty acids (see Section 9.6.2) which are transported through the bloodstream to the muscle bound to albumin. Because the enzymes of fatty acid oxidation are located within subcellular organelles (peroxisomes and mitochondria), there is also need for transport of the fatty acid within the muscle cell this is achieved by fatty acid binding proteins (FABPs). Finally, the fatty acid molecules must be translocated across the mitochondrial membranes into the matrix where their catabolism occurs. To achieve this transfer, the fatty acids must first be activated by formation of a coenzyme A derivative, fatty acyl CoA, in a reaction catalysed by acyl CoA synthetase. [Pg.250]

Medium-chain acyl-CoA synthetase, which is present within the mitochondrial matrix of the liver, activates fatty acids containing from four to ten carbon atoms. Medium-chain length fatty acids are obtained mainly from triacylglycerols in dairy products. However, unlike long-chain fatty acids, they are not esterified in the epithelial cells of the intestine but enter the hepatic portal vein as fatty acids to be transported to the liver. Within the liver, they enter the mitochondria directly, where they are converted to acyl-CoA, which can be fully oxidised and/or converted into ketone bodies. The latter are released and can be taken up and oxidised by tissues. [Pg.134]

The inner mitochondrial membrane has a group-specific transport system for fatty acids. In the cytoplasm, the acyl groups of activated fatty acids are transferred to carnitine by carnitine acyltransferase [1 ]. They are then channeled into the matrix by an acylcar-nitine/carnitine antiport as acyl carnitine, in exchange for free carnitine. In the matrix, the mitochondrial enzyme carnitine acyltransferase catalyzes the return transfer of the acyl residue to CoA. [Pg.164]

Oxidizible substrates from glycolysis, fatty acid or protein catabolism enter the mitochondrion in the form of acetyl-CoA, or as other intermediaries of the Krebs cycle, which resides within the mitochondrial matrix. Reducing equivalents in the form of NADH and FADH pass electrons to complex I (NADH-ubiquinone oxidore-ductase) or complex II (succinate dehydrogenase) of the electron transport chain, respectively. Electrons pass from complex I and II to complex III (ubiquinol-cyto-chrome c oxidoreductase) and then to complex IV (cytochrome c oxidase) which accumulates four electrons and then tetravalently reduces O2 to water. Protons are pumped into the inner membrane space at complexes I, II and IV and then diffuse down their concentration gradient through complex V (FoFi-ATPase), where their potential energy is captured in the form of ATP. In this way, ATP formation is coupled to electron transport and the formation of water, a process termed oxidative phosphorylation (OXPHOS). [Pg.357]

C. Long-chain fatty acids (LCFAs), which have carbon chain lengths of 12-22 units (C12-C22), must be transported into the mitochondrial matrix where the enzymes responsible for their oxidation are located. This is accomplished by the carnitine shutde (Figure 8-3). [Pg.109]

This three-step process for transferring fatty acids into the mitochondrion—esterification to CoA, transesterification to carnitine followed by transport, and transesterification back to CoA—links two separate pools of coenzyme A and of fatty acyl-CoA, one in the cytosol, the other in mitochondria These pools have different functions. Coenzyme A in the mitochondrial matrix is largely used in oxidative degradation of pyruvate, fatty acids, and some amino acids, whereas cytosolic coenzyme A is used in the biosynthesis of fatty acids (see Fig. 21-10). Fatty acyl-CoA in the cytosolic pool can be used for membrane lipid synthesis or can be moved into the mitochondrial matrix for oxidation and ATP production. Conversion to the carnitine ester commits the fatty acyl moiety to the oxidative fate. [Pg.636]

After a LCFA enters a cell, it is converted to the CoA derivative by long-chain fatty acyl CoA synthetase (thiokinase) in the cytosol (see p. 174). Because 0-oxidation occurs in the mitochondrial matrix, the fatty acid must be transported across the mitochon drial inner membrane. Therefore, a specialized carrier transports the long-chain acyl group from the cytosol into the mitochondrial matrix. This carrier is carnitine, and the transport process is called the carnitine shuttle (Figure 16.16). [Pg.188]

Figure 2.7. The complex pathways and processes involved in fat catabolism in vertebrate tissues such as cardiac and skeletal muscles. FFAs arrive at the cell boundary either via VLDL or albumin-associated and enter the cell either by simple diffusion or through transporters. In the cytosol, FFAs are bound by FABPs, which increase the rate and amount of FFA that can be transferred to sites of utilization. Shorter chain FFAs are converted to acetylCoA in peroxisomes longer chain FFAs are directly transferred to mitochondria (via a complex system involving acylcarnitines) as long-chain acylCoA derivatives these enter the /6-oxidation spiral and are released as acetylCoA for entrance into the Krebs or citric acid cycle in the mitochondrial matrix. Fatty acid receptors (FARs) in the nucleus bind to fatty acid response elements (FAREs) and in turn regulate the production of enzymes in their own metabolism. (Modified from Veerkamp and Maatman, 1995.)... Figure 2.7. The complex pathways and processes involved in fat catabolism in vertebrate tissues such as cardiac and skeletal muscles. FFAs arrive at the cell boundary either via VLDL or albumin-associated and enter the cell either by simple diffusion or through transporters. In the cytosol, FFAs are bound by FABPs, which increase the rate and amount of FFA that can be transferred to sites of utilization. Shorter chain FFAs are converted to acetylCoA in peroxisomes longer chain FFAs are directly transferred to mitochondria (via a complex system involving acylcarnitines) as long-chain acylCoA derivatives these enter the /6-oxidation spiral and are released as acetylCoA for entrance into the Krebs or citric acid cycle in the mitochondrial matrix. Fatty acid receptors (FARs) in the nucleus bind to fatty acid response elements (FAREs) and in turn regulate the production of enzymes in their own metabolism. (Modified from Veerkamp and Maatman, 1995.)...
Carnitine is an acyl-group carrier that transports fatty acids into and out of the mitochondrial matrix (Fig. 13-4). Acyl groups are linked by esterification to the hydroxyl group of carnitine by the action of carnitine acyItransferase that resides in the inner membrane of the mitochondrion. [Pg.369]

The synthesis of palmitic acid occurs in the cytosol, from acetyl-CoA. When glucose is abundant and the amount of citrate in the mitochondrial matrix exceeds the demand by the citric acid cycle, the excess citrate is transported out of the mitochondria into the cytosol (Fig. 13-8). Citrate in the cytosol is the source of acetyl groups for fatty acid synthesis, and its metabolism there involves the following enzyme reactions ... [Pg.374]

Fatty acid oxidation would be inhibited because acyl groups could not be transported into the mitochondrial matrix. This would restrict long-term muscle activity. [Pg.535]

Primary carnitine deficiency is caused by a deficiency in the plasma-membrane carnitine transporter. Intracellular carnitine deficiency impairs the entry of long-chain fatty acids into the mitochondrial matrix. Consequently, long-chain fatty acids are not available for p oxidation and energy production, and the production of ketone bodies (which are used by the brain) is also impaired. Regulation of intramitochondrial free CoA is also affected, with accumulation of acyl-CoA esters in the mitochondria. This in turn affects the pathways of intermediary metabolism that require CoA, for example the TCA cycle, pyruvate oxidation, amino acid metabolism, and mitochondrial and peroxisomal -oxidation. Cardiac muscle is affected by progressive cardiomyopathy (the most common form of presentation), the CNS is affected by encephalopathy caused by hypoketotic hypoglycaemia, and skeletal muscle is affected by myopathy. [Pg.270]


See other pages where Fatty acid transport into mitochondrial matrix is mentioned: [Pg.698]    [Pg.92]    [Pg.636]    [Pg.196]    [Pg.320]    [Pg.17]    [Pg.636]    [Pg.201]    [Pg.190]    [Pg.146]    [Pg.643]    [Pg.1048]    [Pg.7]    [Pg.323]    [Pg.92]    [Pg.385]    [Pg.386]    [Pg.104]    [Pg.320]    [Pg.70]    [Pg.549]   
See also in sourсe #XX -- [ Pg.113 , Pg.114 , Pg.115 ]




SEARCH



Fatty acid transporters

Fatty acids transportation

Fatty mitochondrial

Matrix acidizing

Matrix mitochondrial

Mitochondrial fatty acid

Transport matrix

Transport mitochondrial

© 2024 chempedia.info