Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Failure Formation

Tosti et al. tested Pd-Ag membrane reactor for 12 months for H2 permeation [14]. Excellent stability was observed for 12 months of operation. In fact, the complete hydrogen selectivity and none failure (formation of cracks, holes) were observed. They proposed that the reliability is a result of both the tube manufacturing procedure and the reactor design configuration (finger-like). Figure 6.11 shows the picture of membrane reactor before and after the 12 months of operation. [Pg.145]

Hydrate formation is possible only at temperatures less than 35°C when the pressure is less than 100 bar. Hydrates are a nuisance they are capable of plugging (partially or totally) equipment in transport systems such as pipelines, filters, and valves they can accumulate in heat exchangers and reduce heat transfer as well as increase pressure drop. Finally, if deposited in rotating machinery, they can lead to rotor imbalance generating vibration and causing failure of the machine. [Pg.173]

In the pre-development stage, core samples can be used to test the compatibility of injection fluids with the formation, to predict borehole stability under various drilling conditions and to establish the probability of formation failure and sand production. [Pg.126]

Assuming that the diabatic space can be truncated to the same size as the adiabatic space, Eqs. (64) and (65) clearly define the relationship between the two representations, and methods have been developed to obtain the tians-formation matrices directly. These include the line integral method of Baer [53,54] and the block diagonalization method of Pacher et al. [179]. Failure of the truncation assumption, however, leads to possibly important nonremovable derivative couplings remaining in the diabatic basis [55,182]. [Pg.280]

Place 2 ml. of the periodic acid reagent in a small test tube, add one drop (no more—otherwise the silver iodate, if formed, will fail to precipitate) of concentrated nitric acid, and shake well. Add one drop or a small crystal of the compound to be tested, shake the mixture for 15-20 seconds, and then add 1-2 drops of 3 per cent, silver nitrate solution. The instantaneous formation of a white precipitate of silver iodate is a positive test. Failure to form a precipitate, or the appearance of a brown precipitate which redissolves on shaking, constitutes a negative test. [Pg.1070]

The vitamin D3 metabolite la,25-dihydroxycholecalciferol is a lifesaving drug in treatment of defective bone formation due to renal failure. Retrosynthetic analysis (E.G. Baggjolint, 1982) revealed the obvious precursors shown below, a (2-cyclohexylideneethyl)diphenylphosphine oxide (A) and an octahydro-4f/-inden-4-one (B), to be connected in a Wittig-Homer reaction (cf. section 1.5). [Pg.281]

Flexural stress SiC mpture curves are shown in Figure 3 (27). AU. the forms tend to be fairly resistant to time-dependent failure by elevated temperature creep. In addition, SiC shows outstanding resistance to oxidation even at 1200°C as a result of formation of a protective high purity siUca surface layer (28). [Pg.320]

Rhenium hexafluoride is readily prepared by the direct interaction of purified elemental fluorine over hydrogen-reduced, 300 mesh (ca 48 pm) rhenium powder at 120°C. The reaction is exothermic and temperature rises rapidly. Failure to control the temperature may result in the formation of rhenium heptafluoride. The latter could be reduced to rhenium hexafluoride by heating with rhenium metal at 400°C. [Pg.233]

Polyamides, like other macromolecules, degrade as a result of mechanical stress either in the melt phase, in solution, or in the soHd state (124). Degradation in the fluid state is usually detected via a change in viscosity or molecular weight distribution (125). However, in the soHd state it is possible to observe the free radicals formed as a result of polymer chains breaking under the appHed stress. If the polymer is protected from oxygen, then alkyl radicals can be observed (126). However, if the sample is exposed to air then the radicals react with oxygen in a manner similar to thermo- and photooxidation. These reactions lead to the formation of microcracks, embrittlement, and fracture, which can eventually result in failure of the fiber, film, or plastic article. [Pg.230]

Calcium—Silicon. Calcium—silicon and calcium—barium—siUcon are made in the submerged-arc electric furnace by carbon reduction of lime, sihca rock, and barites. Commercial calcium—silicon contains 28—32% calcium, 60—65% siUcon, and 3% iron (max). Barium-bearing alloys contains 16—20% calcium, 9—12% barium, and 53—59% sihcon. Calcium can also be added as an ahoy containing 10—13% calcium, 14—18% barium, 19—21% aluminum, and 38—40% shicon These ahoys are used to deoxidize and degasify steel. They produce complex calcium shicate inclusions that are minimally harm fill to physical properties and prevent the formation of alumina-type inclusions, a principal source of fatigue failure in highly stressed ahoy steels. As a sulfide former, they promote random distribution of sulfides, thereby minimizing chain-type inclusions. In cast iron, they are used as an inoculant. [Pg.541]

The formation of anodic and cathodic sites, necessary to produce corrosion, can occur for any of a number of reasons impurities in the metal, localized stresses, metal grain size or composition differences, discontinuities on the surface, and differences in the local environment (eg, temperature, oxygen, or salt concentration). When these local differences are not large and the anodic and cathodic sites can shift from place to place on the metal surface, corrosion is uniform. With uniform corrosion, fouling is usually a more serious problem than equipment failure. [Pg.266]

In North America, a special, high conductivity, low permeability, "hot-pressed" carbon brick is utilized almost exclusively for hearth walls. Because of their relatively small size and special, heat setting resin cement, and because the brick is installed tightly against the cooled jacket or stave, differential thermal expansion can be accommodated without refractory cracking and effective cooling can be maintained. Additionally, the wall thickness is generally smaller than 1 m, which promotes the easy formation of a protective skull of frozen materials on its hot face. Thus hearth wall problems and breakouts because of carbon wall refractory failure are virtually nonexistent. [Pg.523]

Runaway Reactions Runaway temperature and pressure in process vessels can occur as a resiilt of many fac tors, including loss of cooling, feed or quench failure, excessive feed rates or temperatures, contaminants, catalyst problems, and agitation failure. Of major concern is the high rate of energy release and/or formation of gaseous produc ts, whiai may cause a rapid pressure rise in the equipment. In order to properly assess these effec ts, the reaction kinetics must either be known or obtained experimentally. [Pg.2290]

Under cyclic or repeated stress conditions, rupture of protective oxide films that prevent corrosion takes place at a greater rate than that at which new protec tive films can be formed. Such a situation frequently resiilts in formation of anodic areas at the points of rupture these produce pits that serve as stress-concentration points for the origin or cracks that cause ultimate failure. [Pg.2419]

Ion probes. Determining the level of ions in solution also helps to control corrosion. An increase in concentration of specific ions can contribute to scale formation, which can lead to a corrosion-related failure. Ion-selective elec trode measurements can be included, just as pH measurements can, along with other more typical corrosion measurements. Especially in a complete monitoring system, this can add information about the effect of these ions on the material of interest at the process plant conditions. [Pg.2440]

This book follows the format used in The Nalco Guide to Boiler Failure Analysis, also authored by Robert D. Port and Harvey M. Herro, copyright 1991 by McGraw-Hill, Inc. Each chapter is divided into eight sections, giving specific information on damage ... [Pg.462]

A common experimental method for creating a region of spall is through the flat impact of plates of material. Such impact leads to a process of planar spall in which an interior planar region of material is carried into tension and failure occurs through a process of crack formation or hole cavitation. Much... [Pg.266]

Electrochemical corrosion is understood to include all corrosion processes that can be influenced electrically. This is the case for all the types of corrosion described in this handbook and means that data on corrosion velocities (e.g., removal rate, penetration rate in pitting corrosion, or rate of pit formation, time to failure of stressed specimens in stress corrosion) are dependent on the potential U [5]. Potential can be altered by chemical action (influence of a redox system) or by electrical factors (electric currents), thereby reducing or enhancing the corrosion. Thus exact knowledge of the dependence of corrosion on potential is the basic hypothesis for the concept of electrochemical corrosion protection processes. [Pg.29]


See other pages where Failure Formation is mentioned: [Pg.565]    [Pg.1330]    [Pg.278]    [Pg.41]    [Pg.565]    [Pg.1330]    [Pg.278]    [Pg.41]    [Pg.154]    [Pg.202]    [Pg.426]    [Pg.210]    [Pg.499]    [Pg.505]    [Pg.357]    [Pg.209]    [Pg.241]    [Pg.189]    [Pg.13]    [Pg.444]    [Pg.445]    [Pg.4]    [Pg.129]    [Pg.322]    [Pg.58]    [Pg.186]    [Pg.466]    [Pg.62]    [Pg.81]    [Pg.2280]    [Pg.120]    [Pg.312]    [Pg.182]    [Pg.312]    [Pg.138]    [Pg.226]    [Pg.70]   
See also in sourсe #XX -- [ Pg.3 , Pg.9 , Pg.12 , Pg.43 , Pg.54 , Pg.77 , Pg.81 , Pg.82 , Pg.83 , Pg.97 , Pg.113 , Pg.174 ]




SEARCH



Confining-formation failure

© 2024 chempedia.info