Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xylene extraction

Purge and trap extraction xylene thermally desorbed from the sorbent trap and backflushed with an inert gas onto a GC column for separation from other volatile compounds detected by PID, FID, or a mass spectrometer. [Pg.404]

The number of extractions required to extract xylene from the film is much greater than for extracting benzene out of the film, since the octanol/water partition coefficients differ by 1, a factor of 10, 2.1 and 3.16 for benzene and xylene, respectively. [Pg.83]

Pyrocatechol Violet (formula 4.16) is a popular reagent for determining aluminium [11,31,33-36]. The value of 8 is 6.3-10 at 580 nm (pH 6.5-7.2) [35]. A relatively small increase in sensitivity is observed in ternary systems with CTA, CP, or poly(vinylbenzyltriphenylphosphonium) chloride [37-39]. The ternary complex with Zephiramine can be extracted into CHCI3 or 1,2-dichloroethane (e 9-10 at 590 nm) [40]. The extractive (xylene) method with the use of tridodecylethylammonium bromide is of very high sensitivity (e = 1.7-10 at 613 nm [41]. Aluminium was also determined by the FIA technique using Pyrocatechol Violet [42]. [Pg.87]

Fig. 9. Xylenes separation via Mitsubishi Gas—Chemical Co. HF-BF extraction—isomerization process (107). A = extractor B = decomposer C = separator D = isomerization reactor E = heavy ends tower F = raffinate tower G = separator H = light ends fractionator ... Fig. 9. Xylenes separation via Mitsubishi Gas—Chemical Co. HF-BF extraction—isomerization process (107). A = extractor B = decomposer C = separator D = isomerization reactor E = heavy ends tower F = raffinate tower G = separator H = light ends fractionator ...
Acrylic Acid Recovery. The process flow sheet (Fig. 3) shows equipment and conditions for the separations step. The acryUc acid is extracted from the absorber effluent with a solvent, such as butyl acetate, xylene, diisobutyl ketone, or mixtures, chosen for high selectivity for acryUc acid and low solubihty for water and by-products. The extraction is performed using 5—10 theoretical stages in a tower or centrifiigal extractor (46,61—65). [Pg.153]

Unique adsorption selectivities are employed in the separation of Cg aromatic isomers, a classical problem that caimot be easily solved by distillation, crystallisation, or solvent extraction (10). Although -xylene [106-42-3] can be separated by crystallisation, its recovery is limited because of the formation of eutectic with / -xylene [108-58-3]. However, either -xylene, / -xylene, (9-xylene [95-47-6] or ethylbensene [100-41-4] can be extracted selectively by suitable modification of seoUtic adsorbents. [Pg.292]

TURBINE fuels), are both in demand. Solvent extraction is also extensively used to meet the growing demand for the high purity aromatics such as ben2ene, toluene, and xylene (BTX) as feedstocks for the petrochemical industry (see BTX PROCESSING FEEDSTOCKS,PETROCHEMICALS). Additionally, the separation of aromatics from aUphatics is one of the largest appHcations of solvent extraction (see Petroleum, refinery processes survey). [Pg.78]

Table 4. Extractive Processes for the Separation of Benzene—Toluene—Xylene Mixture from Light Feedstocks ... Table 4. Extractive Processes for the Separation of Benzene—Toluene—Xylene Mixture from Light Feedstocks ...
Extraction of C-8 Aromatics. The Japan Gas Chemical Co. developed an extraction process for the separation of -xylene [106-42-3] from its isomers using HF—BF as an extraction solvent and isomerization catalyst (235). The highly reactive solvent imposes its own restrictions but this approach is claimed to be economically superior to mote conventional separation processes (see Xylenes and ethylbenzene). [Pg.79]

Benzene, toluene, and a mixed xylene stream are subsequently recovered by extractive distillation using a solvent. Recovery ofA-xylene from a mixed xylene stream requires a further process step of either crystallization and filtration or adsorption on molecular sieves. o-Xylene can be recovered from the raffinate by fractionation. In A" xylene production it is common to isomerize the / -xylene in order to maximize the production of A xylene and o-xylene. Additional benzene is commonly produced by the hydrodealkylation of toluene to benzene to balance supply and demand. Less common is the hydrodealkylation of xylenes to produce benzene and the disproportionation of toluene to produce xylenes and benzene. [Pg.175]

Large-scale recovery of light oil was commercialized in England, Germany, and the United States toward the end of the nineteenth century (151). Industrial coal-tar production dates from the earliest operation of coal-gas faciUties. The principal bulk commodities derived from coal tar are wood-preserving oils, road tars, industrial pitches, and coke. Naphthalene is obtained from tar oils by crystallization, tar acids are derived by extraction of tar oils with caustic, and tar bases by extraction with sulfuric acid. Coal tars generally contain less than 1% benzene and toluene, and may contain up to 1% xylene. The total U.S. production of BTX from coke-oven operations is insignificant compared to petroleum product consumptions. [Pg.96]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

Aromatic Hydrocarbons. Sulfolane is used principally as a solvent for extraction of benzene, toluene, and xylene from mixtures containing aHphatic hydrocarbons (33—37). The sulfolane process was introduced in 1959 by SheU Development Company, and that process is Hcensed by Universal OH Products. A sulfolane extraction process is also Hcensed by the Atlantic Richfield Company. In 1994, worldwide consumption was estimated at ca 6974 t/yr of sulfolane for 137 sulfolane extraction units (see Bix processes Extraction, liquid-liquid Xylenes and ethylbenzene). [Pg.69]

In general, the sulfolane extraction unit consists of four basic parts extractor, extractive stripper, extract recovery column, and water—wash tower. The hydrocarbon feed is first contacted with sulfolane in the extractor, where the aromatics and some light nonaromatics dissolve in the sulfolane. The rich solvent then passes to the extractive stripper where the light nonaromatics are stripped. The bottom stream, which consists of sulfolane and aromatic components, and which at this point is essentiaHy free of nonaromatics, enters the recovery column where the aromatics are removed. The sulfolane is returned to the extractor. The non aromatic raffinate obtained initially from the extractor is contacted with water in the wash tower to remove dissolved sulfolane, which is subsequently recovered in the extract recovery column. Benzene and toluene recoveries in the process are routinely greater than 99%, and xylene recoveries exceed 95%. [Pg.69]

Another sulfur dioxide appHcation in oil refining is as a selective extraction solvent in the Edeleanu process (323), wherein aromatic components are extracted from a kerosene stream by sulfur dioxide, leaving a purified stream of saturated aHphatic hydrocarbons which are relatively insoluble in sulfur dioxide. Sulfur dioxide acts as a cocatalyst or catalyst modifier in certain processes for oxidation of o-xylene or naphthalene to phthaHc anhydride (324,325). [Pg.148]

In order to obtain pure aromatics, cmde reformate is extracted to separate the aromatics from unreacted paraffins and cyclop araftins. The aromatics are, in turn, separated by simple fractional distillation to yield high purity benzene, toluene, xylenes, and aromatics. [Pg.178]

Toluene, Benzene, and BTX Reeoveiy. The composition of aromatics centers on the C - and Cg-fraction, depending somewhat on the boihng range of the feedstock used. Most catalytic reformate is used directiy in gasoline. That part which is converted to benzene, toluene, and xylenes for commercial sale is separated from the unreacted paraffins and cycloparaffins or naphthenes by hquid—hquid extraction or by extractive distillation. It is impossible to separate commercial purity aromatic products from reformates by distillation only because of the presence of azeotropes, although comphcated further by the closeness in boihng points of the aromatics, t/o-paraffin, and unreacted C -, C -, and Cg-paraffins. [Pg.179]

The feedstock is usually extracted toluene, but some reformers are operated under sufftciendy severe conditions or with selected feedstocks to provide toluene pure enough to be fed directiy to the dealkylation unit without extraction. In addition to toluene, xylenes can also be fed to a dealkylation unit to produce benzene. Table 20 Hsts the producers and their capacities for manufacture of benzene by hydrodealkylation of toluene. Additional information on hydrodealkylation is available in References 50 and 52. [Pg.189]

Rapid, simple, quaUtative methods suitable for determining the presence of benzene in the workplace or surroundings have been utilized since the 1930s. Many early tests offered methods for detection of aromatics but were not specific for benzene. A straightforward test allowing selective detection of benzene involves nitration of a sample to y -dinitrobenzene and reaction of the resultant ether extract with an ethanoHc solution of sodium hydroxide and methyl ethyl ketone (2-butanone), followed by the addition of acetic acid to eliminate interferences from toluene and xylenes. Benzene imparts a persistent red color to the solution (87). The method is claimed to be sensitive to concentrations as low as 0.27 ppm benzene from 10 mL air samples. [Pg.46]

Downstream Processing. In addition to extraction, various downstream operations are often carried out on the BTX product to produce products in proportions to fit the market demand. A typical aromatics processing scheme is shown in Eigure 8 in which ben2ene, xylene, and o-xylene are the products. [Pg.312]

After the cmde BTX is formed, by reforming in this case, a heart cut is sent to extraction. Actually, the xylenes and heavier components are often sent to downstream processes without extraction. The toluene produced is converted to ben2ene, a more valuable petrochemical, by mnning it through a hydrodealkylation unit. This catalytic unit operates at 540—810°C with an excess of hydrogen. Another option is to disproportionate toluene or toluene plus aromatics to a mixture of ben2ene and xylenes using a process such as UOP s Tatoray or Mobil s Selective Toluene Disproportionation Process (STDP) (36). [Pg.312]

Batch extraction of octanoic acid from water and corn syrup into xylene, paraffin oil, and their mixtures baffled vessel, turbine impeller. proportional to... [Pg.1468]

Albertsson (Paiiition of Cell Paiiicle.s and Macromolecules, 3d ed., Wiley, New York, 1986) has extensively used particle distribution to fractionate mixtures of biological products. In order to demonstrate the versatility of particle distribution, he has cited the example shown in Table 22-14. The feed mixture consisted of polystyrene particles, red blood cells, starch, and cellulose. Liquid-liquid particle distribution has also been studied by using mineral-matter particles (average diameter = 5.5 Im) extracted from a coal liquid as the solid in a xylene-water system [Prudich and Heniy, Am. Inst. Chem. Eng. J., 24(5), 788 (1978)]. By using surface-active agents in order to enhance the water wettability of the solid particles, recoveries of better than 95 percent of the particles to the water phase were obsei ved. All particles remained in the xylene when no surfactant was added. [Pg.2015]

Although the elastomer phase is essentially in particulate form, the tensile strength of the blend can be increased five-fold by increasing the cross-link density from zero to that conventionally used in vulcanisation processes, whilst tension set may be reduced by over two-thirds. Since the thermoplastic polyolefin phase may be completely extracted by boiling decalin or xylene, there is apparently no covalent chemical bonding of elastomer and thermoplastic phases. [Pg.303]


See other pages where Xylene extraction is mentioned: [Pg.5696]    [Pg.5696]    [Pg.430]    [Pg.718]    [Pg.845]    [Pg.846]    [Pg.414]    [Pg.171]    [Pg.175]    [Pg.354]    [Pg.517]    [Pg.85]    [Pg.119]    [Pg.339]    [Pg.174]    [Pg.185]    [Pg.188]    [Pg.169]    [Pg.171]    [Pg.61]    [Pg.311]    [Pg.467]    [Pg.1467]    [Pg.36]    [Pg.324]    [Pg.464]    [Pg.80]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



© 2024 chempedia.info