Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction three-layers

If you netralize the formic acid mix with 25% NaOH the layers separate out nicely. It takes 75 / of 25% NaOH to neutralize the soln for 150grm 88% formic, so you ll need a big sepatory funnel. After you hit ph 4.5 add it rery carefully cause it ll run away to 9+ real quick. You can then back extract the water with DCM, or I guess preferably ether. If you use too much DCM when extracting it sinks to the bottom and some product floats on the top, so you end up with three layers... But then my lab tech SUXSI (not that I d partake in iilegal activities. p"... [Pg.56]

To a solution of 0.50 tnol of ethyllithium in about 450 tnl of diethyl ether (see Chapter II, Exp. 1) was added 0.20 mol of 1-heptyne or butylallene (see Chapter VI, Exp. 1) with cooling below Q°C. After the addition the cooling bath was removed and the thermometer-gas outlet combination was replaced with a reflux condenser. The solution was heated under reflux for 6 h. The thermometer-gas outlet was again placed on the flask and the yellow suspension was cooled to -50°C. Trimethylchlorosilane (0.20 mol) was added dropwise in 10 min, while keeping the temperature between -40 and -35°C. After having kept the mixture for an additional 30 min at -30°C, it was poured into 200 ml of ice-water. The aqueous layer was extracted three times with small portions of diethyl ether. [Pg.53]

The solution was then poured into 200 ml of saturated ammonium chloride solution. After vigorous shaking the upper layer was separated off and the aqueous layer was extracted three times with diethyl ether. The combined ethereal solutions were dried over magnesium sulfate and then concentrated in a water-pump vacuum. [Pg.53]

To a mixture of 100 ml of THF and 0.10 mol of the epoxide (note 1) was added 0.5 g Of copper(I) bromide. A solution of phenylmagnesium bromide (prepared from 0.18 mol of bromobenzene, see Chapter II, Exp. 5) in 130 ml of THF was added drop-wise in 20 min at 20-30°C. After an additional 30 min the black reaction mixture was hydrolysed with a solution of 2 g of NaCN or KCN and 20 g of ammonium chloride in 150 ml of water. The aqueous layer was extracted three times with diethyl ether. The combined organic solutions were washed with water and dried over magnesium sulfate. The residue obtained after concentration of the solution in a water-pump vacuum was distilled through a short column, giving the allenic alcohol, b.p. 100°C/0.2 mmHg, n. 1.5705, in 75% yield. [Pg.172]

To a solution of 0.10 mol of the enyne alcohol (see Chapter III, Exp. 41) in 140 ml of dry diethyl ether was added in 15 min with cooling at about -30°C a solution of 0.22 mol of ethyllithium in about 180 ml of diethyl ether (see Chapter II, Exp. 1). The clear solution was then warmed to 25 C and after standing for 10 min at that temperature, it was cautiously poured into 200 ml of an aqueous solution of 30 g of NH,C1. The layers formed after standing were separated, and the aqueous layer was extracted three times with diethyl ether. The combined... [Pg.208]

To the dry residue in the Claisen flask too cc. of water is added and the evaporation to dryness is repeated. The second distillate is discarded. To the residue in the flask 150 cc. of water and 150 cc. of ether are added and the mixture is shaken until solution is complete. The aqueous layer is separated and extracted three times with loo-cc. portions of ether. The ether... [Pg.80]

D. Tricafbonyl[(2,3,4 ,5-ri)-2,4-cyclohexadien-l-one]iron. The mixture of tetrafluoroborate from Part C (21 g., 0.062 mole) is heated on a steam bath for 1 hour in 450 ml. of water, during which time orange crystals separate. After cooling, the mixture is extracted three times with 100-ml. portions of ether into which most of the solid dissolves. (The aqueous layer is used in Part E.) The extracts are dried over anhydrous magnesium sulfate, and the ether is evaporated to yield the yellow crystalline dienone complex, 7-7.5 g. (47-51%) (Note 22). [Pg.109]

The cooled mixture is transferred to a 3-1. separatory funnel, and the ethylene dichloride layer is removed. The aqueous phase is extracted three times with a total of about 500 ml. of ether. The ether and ethylene chloride solutions are combined and washed with three 100-ml. portions of saturated aqueous sodium carbonate solution, which is added cautiously at first to avoid too rapid evolution of carbon dioxide. The non-aqueous solution is then dried over anhydrous sodium carbonate, the solvents are distilled, and the remaining liquid is transferred to a Claisen flask and distilled from an oil bath under reduced pressure (Note 5). The aldehyde boils at 78° at 2 mm. there is very little fore-run and very little residue. The yield of crude 2-pyrrolealdehyde is 85-90 g. (89-95%), as an almost water-white liquid which soon crystallizes. A sample dried on a clay plate melts at 35 0°. The crude product is purified by dissolving in boiling petroleum ether (b.p. 40-60°), in the ratio of 1 g. of crude 2-pyrrolealdehyde to 25 ml. of solvent, and cooling the solution slowly to room temperature, followed by refrigeration for a few hours. The pure aldehyde is obtained from the crude in approximately 85% recovery. The over-all yield from pyrrole is 78-79% of pure 2-pyrrolealdehyde, m.p. 44 5°. [Pg.75]

To the cooled reaction mixture, 200 ml. of water is added carefully with stirring. Potassium carbonate is added with continued stirring until the water layer is saturated the mixture is now transferred to a separatory funnel and extracted three times with 60-ml. portions of ether. The combined ether extracts are dried over solid sodium hydroxide and are then transferred to a simple distillation apparatus. Distillation is commenced with a steam bath as source of heat when most of the ether has been removed, the steam bath is replaced by a flame. Distillation is continued until most of the piperidine (b.p. 106°) has been removed. The cooled residue in the distillation flask is recrystallized from petroleum ether (boiling range 30-60°) with the use of charcoal. There is obtained 30.0 g. (71%) of N-/3-naphthyl-piperidine as tan crystals, m.p. 52-56°. An additional recrystallization from the same solvent gives crystals, m.p. 56-58°, with about 10% loss in weight (Note 6). [Pg.75]

To the cooled (room temperature) reaction mixture, glacial acetic acid (15 ml) is added dropwise with stirring (formation of pasty solid), followed by 50 ml of ice-cold water (dissolution of the solid). The benzene layer is separated, the aqueous layer is extracted three times with 25-ml portions of benzene, and the combined benzene extracts are washed three times with 25-ml portions of cold water. Benzene is removed by distillation at atmospheric pressure, and excess diethyl carbonate is removed by distillation under aspirator pressure. The residue is distilled under vacuum, affording 2-carbethoxycyclooctanone, bp 85-8770.1 mm, 1.4795-1,4800, about 14 g (94%). [Pg.89]

Reaction with Alkyl Halides The gas inlet tube is replaced by an addition funnel, and 10 ml of HMPT is added rapidly with stirring. The mixture is cooled to 10-15°, and a solution of the alkyl halide (0.1 mole) in 20 ml of THF is added dropwise over a period of 30-40 minutes. The mixture is then heated to 40° for 2-3 hours. The thick white suspension of the sodium halide is cooled and dilute cold hydrochloric acid is carefully added until the mixture is clear. The organic layer is separated, and the aqueous layer is extracted three times with 20-ml portions of ether, the ethereal extracts then being combined with the organic material. The ethereal solution is washed twice with saturated sodium chloride solution and dried. The ether and THF are removed under reduced pressure (rotary evaporator), and the alkyne is distilled. [Pg.123]

A l-Iiter, three-necked, round-bottom flask is equipped with a mechanical stirrer, a thermometer immersed in the reaction mixture, a dropping funnel, and a gas vent. In the flask is placed a mixture of 96% sulfuric acid (25.5 ml, 470 g, 4.8 mole), carbon tetrachloride (100 ml), and adamantane (13.6 g, 0.10 mole), and the mixture is cooled to 15-20° with rapid stirring in an ice bath. One milliliter of 98% formic acid is added and the mixture is stirred until the evolution of carbon monoxide is rapid (about 5 minutes). A solution of 29.6 g (38 ml, 0.40 mole) of t-butyl alcohol in 55 g (1.2 mole) of 98-100% formic acid is then added dropwise to the stirred mixture over 1-2 hours, the temperature being maintained at 15-20°. After stirring for an additional 30 minutes, the mixture is poured onto 700 g of ice, the layers are separated, and the aqueous (upper) layer is extracted three times with lOO-ml portions of carbon tetrachloride. The combined carbon tetrachloride solutions are shaken with 110 ml of 15 A ammonium hydroxide, whereupon ammonium 1-adamantanecarboxylate forms as a crystalline solid. This precipitate is collected by filtration through a fritted glass funnel and washed... [Pg.151]

A mixture of 22 parts of 1 -ethyl-1,4-dihydro-5H-tetrazol-5-one,45 parts of 1 -bromo-2-chloro-ethane,26 parts of sodium carbonate,0.3 part of potassium iodide and 240 partsof 4-methyl-2 pentanone is stirred and refluxed overnight with water-separator. The reaction mixture is cooled, water is added and the layers are separated. The aqueous phase is extracted three times with dichloromethane. The combined organic phases are dried, filtered and evaporated. The residue is purified by column-chromatography over silica gel using trichloromethane as eluent. The pure fractions are collected and the eluent is evaporated, yielding 28.4 parts (80%) of 1-(2-chloroethyi)-4-ethyl-1,4-dihydro-5H-tetrazol-5-one as a residue. [Pg.38]

The mixture is heated at reflux for two hours with continual agitation and there is then added dropwise a solution of 2-methyl-3-dimethylaminopropyl chloride in an equal volume of Xylene. The mixture is then heated for fifteen hours, after which time it is cooled and decomposed by the cautious addition of ice water. The layers are separated and the aqueous layer extracted with ether. The combined organic layers are next extracted with 10% hydrochloric acid and the acidic extracts then rendered alkaline by the addition of ammonium hydroxide. The precipitated oil is extracted three times with chloroform. The chloroform extracts are dried and concentrated in vacuo, the residue being distiiled to yield the product. [Pg.213]

A mixture of iron, ferric chloride and water is added to the toluene solution. The mixture is heated to reflux and concentrated hydrochloric acid is added dropwise at a rate calculated to keep the mixture refluxing vigorously. After the hydrochloric acid Is all added, the refluxing is continued by the application of heat for several hours. A siliceous filter aid is then added to the cooled reaction mixture and the material is removed by filtration. The filter cake is washed four times, each time with 90 ml of benzene. The organic layer is then separated from the filtrate. The water layer is acidified to a pH of 2 and extracted three times with 90 ml portions of benzene. [Pg.240]

The solution of the Grignard reagent prepared in (A) was cooled to 5° to 10°C and stirred while 22.7 g (0.11 mol) of dibenzo[a,e] cycloheptatrien-5-one was added in portions. After stirring for 1 hour during which time the reaction mixture was allowed to warm up to room temperature, the bulk of the tetrahydrofuran was distilled at 40° to 50°C under reduced pressure. Benzene, 150 ml, was added and the reaction mixture stirred and cooled in an ice-bath while water, 100 ml, was added gradually. The benzene layer was separated by decantation and the gelatinous residue extracted three times with 75 ml portions of boiling benzene. [Pg.421]


See other pages where Extraction three-layers is mentioned: [Pg.243]    [Pg.243]    [Pg.121]    [Pg.38]    [Pg.41]    [Pg.47]    [Pg.48]    [Pg.55]    [Pg.62]    [Pg.63]    [Pg.72]    [Pg.120]    [Pg.123]    [Pg.124]    [Pg.132]    [Pg.159]    [Pg.164]    [Pg.167]    [Pg.168]    [Pg.169]    [Pg.173]    [Pg.175]    [Pg.177]    [Pg.185]    [Pg.187]    [Pg.188]    [Pg.216]    [Pg.100]    [Pg.28]    [Pg.181]    [Pg.452]    [Pg.70]    [Pg.118]    [Pg.133]    [Pg.1300]   
See also in sourсe #XX -- [ Pg.115 ]

See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Extraction layer

© 2024 chempedia.info