Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction solutes, separating

PCP extract solution Separate R-LPS away from Galanos et al. (1969)... [Pg.30]

Step 1. Extraction and separation of the acidic components. Shake 5-10 g. of the sohd mixture (or of the residue R obtained after the removal of the solvent on a water bath) with 50 ml. of pure ether. If there is a residue (this probably belongs to Solubihty Group II or it may be a polysaccharide), separate it by filtration, preferably through a sintered glass funnel, and wash it with a Uttle ether. Shake the resulting ethereal solution in a smaU separatory funnel with 15 ml. portions of 5 per cent, aqueous sodium hydroxide solution until all the acidic components have been removed. Three portions of alkaU are usuaUy sufficient. Set aside the residual ethereal solution (Fj) for Step 2. Combine the sodium hydroxide extracts and wash the resulting mixture with 15-20 ml. of ether place the ether in the ETHER RESIDUES bottle. Render the alkaline extract acid to litmus with dilute sulphuric acid and then add excess of sohd sodium bicarbonate. [Pg.1095]

The physical process of Hquid—Hquid extraction separates a dissolved component from its solvent by transfer to a second solvent, immiscible with the first but having a higher affinity for the transferred component. The latter is sometimes called the consolute component. Liquid—Hquid extraction can purify a consolute component with respect to dissolved components which are not soluble in the second solvent, and often the extract solution contains a higher concentration of the consolute component than the initial solution. In the process of fractional extraction, two or more consolute components can be extracted and also separated if these have different distribution ratios between the two solvents. [Pg.60]

Lube oil extraction plants often use phenol as solvent. Phenol is used because of its solvent power with a wide range of feed stocks and its ease of recovery. Phenol preferentially dissolves aromatic-type hydrocarbons from the feed stock and improves its oxidation stability and to some extent its color. Phenol extraction can be used over the entire viscosity range of lube distillates and deasphalted oils. The phenol solvent extraction separation is primarily by molecular type or composition. In order to accomplish a separation by solvent extraction, it is necessary that two liquid phases be present. In phenol solvent extraction of lubricating oils these two phases are an oil-rich phase and a phenol-rich phase. Tne oil-rich phase or raffinate solution consists of the "treated" oil from which undesirable naphthenic and aromatic components have been removed plus some dissolved phenol. The phenol-rich phase or extract solution consists mainly of the bulk of the phenol plus the undesirable components removed from the oil feed. The oil materials remaining... [Pg.231]

To 10 g of cyclohexane-1,4-oxide is added 48% aqueous hydrobromic acid (60 g). The phases are mixed thoroughly and allowed to stand at room temperature until the solution separates into two layers (usually 5 days). The mixture is saturated with sodium chloride and extracted twice with 25-ml portions of ether. The ether layer is washed with an equal volume of saturated sodium bicarbonate solution, then with the same amount of water. Finally, the ether solution is dried over anhydrous sodium sulfate, the ether is evaporated, and the residue is allowed to cool, whereupon crystallization should follow. The crude product may be recrystallized from petroleum ether giving material of mp 81-82° (yield, 11 g). [Pg.52]

The aqueous solution is then concentrated to dryness at an outside temperature of 40° to 45°C and at low pressure. The residue, obtained by drying in a vacuum at 40° to 45°C is triturated in a mortar with ethyl ether and, after filtration, is extracted with 3,400 ml boiling absolute ethanol. The ethanol extract is separated from the undissolved part by filtration, cooled and the product which crystallizes by cooling is filtered and dried at 40°C in a vacuum. In that manner the disodium (4,4 -disulfoxy-diphenyl)-(2-pyridyl)-methane bi-hydrate is obtained, which takes the form of a white solid, according to U.S. Patent 3,528,986. [Pg.1233]

Figure 11.17a to Figure 11.17d show densitograms from the separation of Che-lidonium majus quaternary alkaloids. Various volumes of the extract solution of the same concentration, from 0.2 to 1.6 ml, were introduced to the adsorbent layer. Thus, the following portions of extract of 0.25, 0.5, 1, and 2 mg were chromatographed by the use of threefold development with the multicomponent eluent. The densitograms depict fast loss of resolution with the increase of the introduced sample [114]. [Pg.278]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

The sample volume initially introduced onto the sorbent, the choice of sorbent and solvent system and careful control of the amount of solvent used are of paramount importance for effective pre-concentration and/or clean-up of the analyte in the sample. The number of theoretical plates in an SPE column is low (/V = 10-25). SPE is a multistage separation method and as such requires only a reasonable difference in extractability to separate two solutes. In SPE concentration factors of 1000 or more are possible, as compared to up to 100 for LLE with vortex mixing. [Pg.125]

One of the attractive features of SFE with CO2 as the extracting fluid is the ability to directly couple the extraction method with subsequent analytical methods (both chromatographic and spectroscopic). Various modes of on-line analyses have been reported, and include continuous monitoring of the total SFE effluent by MS [6,7], SFE-GC [8-11], SFE-HPLC [12,13], SFE-SFC [14,15] and SFE-TLC [16]. However, interfacing of SFE with other techniques is not without problems. The required purity of the CO2 for extraction depends entirely on the analytical technique used. In the off-line mode SFE takes place as a separate and isolated process to chromatography extracted solutes are trapped or collected, often in a suitable solvent for later injection on to chromatographic instrumentation. Off-line SFE is inherently simpler to perform, since only the extraction parameters need to be understood, and several analyses can be performed on a single extract. Off-line SFE still dominates over on-line determinations of additives-an... [Pg.429]

Like gas absorption, liquid-liquid extraction separates a homogeneous mixture by the addition of another phase - in this case, an immiscible liquid. Liquid-liquid extraction carries out separation by contacting a liquid feed with another immiscible liquid. The equipment used for liquid-liquid extraction is the same as that used for the liquid-liquid reactions illustrated in Figure 7.4. The separation occurs as a result of components in the feed distributing themselves differently between the two liquid phases. The liquid with which the feed is contacted is known as the solvent. The solvent extracts solute from the feed. The solvent-rich stream obtained from the separation is known as the extract and the residual feed from which the solute has been extracted is known as the raffinate. [Pg.184]

Mild extraction was also found to be effective in the analysis of extracts of Flaveria haumanii, l in which quercetin, kaempferol, isorhamnetin as well as their glycosides and sulfate esters were identified. The obtained results were useful in the identification of the colourants from fibres from pre-Columbian Andean textiles extracted with the use of water-methanol solution with formic or hydrochloric acid. The components of each extract were separated on a reversed phase HPLC column and the eluates were monitored at... [Pg.375]

Property measurements of fullerenes are made either on powder samples, films or single crystals. Microcrystalline C6o powder containing small amounts of residual solvent is obtained by vacuum evaporation of the solvent from the solution used in the extraction and separation steps. Pristine Cgo films used for property measurements are typically deposited onto a variety of substrates (< . , a clean silicon (100) surface to achieve lattice matching between the crystalline C60 and the substrate) by sublimation of the Cr,o powder in an inert atmosphere (e.g., Ar) or in vacuum. Single crystals can be grown either from solution using solvents such as CS and toluene, or by vacuum sublimation [16, 17, 18], The sublimation method yields solvent-free crystals, and is the method of choice. [Pg.58]


See other pages where Extraction solutes, separating is mentioned: [Pg.481]    [Pg.518]    [Pg.881]    [Pg.895]    [Pg.107]    [Pg.230]    [Pg.497]    [Pg.144]    [Pg.160]    [Pg.1488]    [Pg.59]    [Pg.214]    [Pg.599]    [Pg.232]    [Pg.749]    [Pg.150]    [Pg.616]    [Pg.1162]    [Pg.72]    [Pg.91]    [Pg.83]    [Pg.52]    [Pg.113]    [Pg.170]    [Pg.481]    [Pg.518]    [Pg.881]    [Pg.895]    [Pg.408]    [Pg.510]    [Pg.513]    [Pg.73]    [Pg.125]    [Pg.624]    [Pg.780]    [Pg.235]   


SEARCH



Extractants separation

Extracting solution

Extraction , separations

Extractive separations

Separators solutions

Solute separation

Solution extraction

Solution separations

© 2024 chempedia.info