Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction chelating extractants

CA Liquid-Liquid Extractions Involving Metal Chelators... [Pg.221]

Scheme for the liquid-liquid extraction of a metal ion by a metal chelator. [Pg.221]

Liquid-liquid extractions using ammonium pyrrolidine dithiocarbamate (APDC) as a metal chelating agent are commonly encountered in the analysis of metal ions in aqueous samples. The sample and APDC are mixed together, and the resulting metal-ligand complexes are extracted into methyl isobutyl ketone before analysis. [Pg.223]

Cupferron is a ligand whose strong affinity for metal ions makes it useful as a chelating agent in liquid-liquid extractions. The following distribution ratios are known for the extraction of Hg +, Pb +, and Zn + from aqueous solutions to an organic solvent. [Pg.230]

A number of organic compounds, eg, acetylacetone [123-54-6] and cupferron [135-20-6] form compounds with aqueous actinide ions (IV state for reagents mentioned) that can be extracted from aqueous solution by organic solvents (12). The chelate complexes are especially noteworthy and, among these, the ones formed with diketones, such as 3-(2-thiophenoyl)-l,l,l-trifluoroacetone [326-91-0] (C4H2SCOCH2COCF2), are of importance in separation procedures for plutonium. [Pg.220]

Pentanedione is widely used in extraction processes for the separation and purification of metals because of its abiUty to form covalent metal chelates. It is also used as an intermediate in the production of heterocycHc substances and dyes, as a fuel additive (324), and in metal plating and resin modification. [Pg.499]

The lanthanides form many compounds with organic ligands. Some of these compounds ate water-soluble, others oil-soluble. Water-soluble compounds have been used extensively for rare-earth separation by ion exchange (qv), for example, complexes form with citric acid, ethylenediaminetetraacetic acid (EDTA), and hydroxyethylethylenediaminetriacetic acid (HEEDTA) (see Chelating agents). The complex formation is pH-dependent. Oil-soluble compounds ate used extensively in the industrial separation of rate earths by tiquid—tiquid extraction. The preferred extractants ate catboxyhc acids, otganophosphoms acids and esters, and tetraaLkylammonium salts. [Pg.541]

The extraction of metal ions depends on the chelating ability of 8-hydroxyquinoline. Modification of the stmcture can improve its properties, eg, higher solubility in organic solvents (91). The extraction of nickel, cobalt, copper, and zinc from acid sulfates has been accompHshed using 8-hydroxyquinohne in an immiscible solvent (92). In the presence of oximes, halo-substituted 8-hydroxyquinolines have been used to recover copper and zinc from aqueous solutions (93). Dilute solutions of heavy metals such as mercury, ca dmium, copper, lead, and zinc can be purified using quinoline-8-carboxyhc acid adsorbed on various substrates (94). [Pg.393]

Many attempts have been made to reduce the ammoniacal and sulfurous odor of the standard thioglycolate formulations. As the cosmetics market is very sensitive to the presence of impurities, odor, and color, various treatments of purification have been claimed to improve the olfactory properties of thioglycolic acid and its salts, such as distillation (33), stabilization against the formation of H2S using active ingredients (34), extraction with solvents (35), active carbon (36), and chelate resin treatments (37). [Pg.5]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

Further Preparative Reactions. When pulps are to be used in the production of materials that do not retain the original fiber stmcture, such as rayon or ceUulose acetate film, the lignin, hemiceUulose, and other components must be reduced to the lowest possible concentrations. A surfactant (ionic or nonionic) is often added during a hot, weakly alkaline extraction step after chlorination. Another approach, sometimes used in addition to the surfactant step, is to treat the pulp with 6—10% NaOH after most of the oxidative bleaching is finished. This treatment removes most of the hemiceUulose. In most purification plants the final stage includes use of sulfuric acid chelators are optional. [Pg.238]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

J. Stary, The S olvent Extraction of Metal Chelates, The MacmiUan Co., New York, 1964. [Pg.395]

The carbanions derived from acylthiophenes have been condensed with aldehydes,and, through the Claisen condensation with esters, thienylsubstituted -diketones have been obtained. 2-Thenoyl trifluoroacetone, first prepared by Reid and Calvin through the Claisen condensation of 2-acetylthiophene with ethyl trifluoracetate, has become an extremely useful chelating agent for the extraction of numerous elements from strongly acidic solutions, The tautomeric form which dominates in aqueous solution is the ketone hy-drate. Other thiophenes have also proved useful for analytical purposes. ... [Pg.98]

In the case of inorganic solutes we are concerned largely with samples in aqueous solution so that it is necessary to produce substances, such as neutral metal chelates and ion-association complexes, which are capable of extraction into organic solvents. For organic solutes, however, the extraction system may sometimes involve two immiscible organic solvents rather than the aqueous-organic type of extraction. [Pg.161]

The nature of the donor atoms in the chelating agent. Ligands which contain donor atoms of the soft-base type form their most stable complexes with the relatively small group of Class B metal ions (i.e. soft acids) and are thus more selective reagents. This is illustrated by the reagent diphenylthiocarbazone (dithizone) used for the solvent extraction of metal ions such as Pd2+, Ag+, Hg2+, Cu2+, Bi3+, Pb2+, and Zn2 +. ... [Pg.164]

The choice of a satisfactory chelating agent for a particular separation should, of course, take all the above factors into account. The critical influence of pH on the solvent extraction of metal chelates is discussed in the following section. [Pg.165]

The solvent extraction of a neutral metal chelate complex formed from a chelating agent HR according to the equation... [Pg.165]


See other pages where Extraction chelating extractants is mentioned: [Pg.473]    [Pg.826]    [Pg.473]    [Pg.221]    [Pg.222]    [Pg.222]    [Pg.224]    [Pg.418]    [Pg.705]    [Pg.241]    [Pg.62]    [Pg.62]    [Pg.81]    [Pg.453]    [Pg.478]    [Pg.497]    [Pg.440]    [Pg.564]    [Pg.226]    [Pg.227]    [Pg.62]    [Pg.366]    [Pg.393]    [Pg.393]    [Pg.378]    [Pg.173]    [Pg.256]    [Pg.412]    [Pg.310]    [Pg.154]    [Pg.424]    [Pg.691]    [Pg.12]    [Pg.164]   
See also in sourсe #XX -- [ Pg.473 ]

See also in sourсe #XX -- [ Pg.473 ]

See also in sourсe #XX -- [ Pg.473 ]




SEARCH



8-Hydroxyquinoline chelates, extraction

Chelate extraction

Chelate extraction

Chelate extraction systems

Chelate solvent extraction

Chelate-assisted solvent-extraction

Chelating agents extractants

Chelating extractant

Chelating extractants

Chelating extractants

Chelating nonionic extractants

Extractants chelating acidic

Metal chelate extraction systems

Metal chelates, extraction

Modern Extraction Mechanism of Metal Chelate

Reverse reaction chelation/extraction

Solvent extraction metal chelates

Solvent-extraction chelating extractants, structural

© 2024 chempedia.info