Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experiments, behavioural

Schaal B., Orgeur P. and Arnould C. (1995). Olfactory preferences in newborn lambs — possible influence of prenatal experience. Behaviour 132, 351-365. [Pg.244]

Restructuring, or positive labelling of experiences and utterances of the client, is used to provide a different, more positive, meaning for the client s experiences, behaviour or feelings. If clients have predominantly negative views of their experiences, behaviours or feelings, then the use of restructuring by the therapist creates a more positive interpretation for them. The therapist helps the client to construe events more positively—an important process in the development of self-esteem and self-efficacy expectations. [Pg.31]

The Institute has many-year experience of investigations and developments in the field of NDT. These are, mainly, developments which allowed creation of a series of eddy current flaw detectors for various applications. The Institute has traditionally studied the physico-mechanical properties of materials, their stressed-strained state, fracture mechanics and developed on this basis the procedures and instruments which measure the properties and predict the behaviour of materials. Quite important are also developments of technologies and equipment for control of thickness and adhesion of thin protective coatings on various bases, corrosion control of underground pipelines by indirect method, acoustic emission control of hydrogen and corrosion cracking in structural materials, etc. [Pg.970]

Similar behaviour occurs when trying to locate voids in concrete cast behind steel plates, e g. the steel liner in nuclear containment walls. Our own experience has shown that in the case of a steel liner (encast at depth 250 mm) the reflected compression waves are dominant regardless of the condition of the concrete behind the plate. [Pg.1002]

The linear dependence of C witii temperahire agrees well with experiment, but the pre-factor can differ by a factor of two or more from the free electron value. The origin of the difference is thought to arise from several factors the electrons are not tndy free, they interact with each other and with the crystal lattice, and the dynamical behaviour the electrons interacting witii the lattice results in an effective mass which differs from the free electron mass. For example, as the electron moves tlirough tiie lattice, the lattice can distort and exert a dragging force. [Pg.129]

An essential feature of mean-field theories is that the free energy is an analytical fiinction at the critical point. Landau [100] used this assumption, and the up-down symmetry of magnetic systems at zero field, to analyse their phase behaviour and detennine the mean-field critical exponents. It also suggests a way in which mean-field theory might be modified to confonn with experiment near the critical point, leading to a scaling law, first proposed by Widom [101], which has been experimentally verified. [Pg.536]

As in the experiments, the simulation results also show dynamie sealing at late times. The sealing fimetion (kR(x)) at late times has the large /x behaviour. S (y) known as Porod s law [13, 16]. This result is... [Pg.742]

Similar behaviour is observed in both experiments and calculations for HCO—>H+CO dissociation [88, 90... [Pg.1037]

This expression is the sum of a transient tenu and a steady-state tenu, where r is the radius of the sphere. At short times after the application of the potential step, the transient tenu dominates over the steady-state tenu, and the electrode is analogous to a plane, as the depletion layer is thin compared with the disc radius, and the current varies widi time according to the Cottrell equation. At long times, the transient cunent will decrease to a negligible value, the depletion layer is comparable to the electrode radius, spherical difhision controls the transport of reactant, and the cunent density reaches a steady-state value. At times intenuediate to the limiting conditions of Cottrell behaviour or diffusion control, both transient and steady-state tenus need to be considered and thus the fiill expression must be used. Flowever, many experiments involving microelectrodes are designed such that one of the simpler cunent expressions is valid. [Pg.1939]

In sorjDtion experiments, the weight of sorbed molecules scales as tire square root of tire time, K4 t) ai t if diffusion obeys Pick s second law. Such behaviour is called case I diffusion. For some polymer/penetrant systems, M(t) is proportional to t. This situation is named case II diffusion [, ]. In tliese systems, sorjDtion strongly changes tire mechanical properties of tire polymers and a sharjD front of penetrant advances in tire polymer at a constant speed (figure C2.1.18). Intennediate behaviours between case I and case II have also been found. The occurrence of one mode, or tire otlier, is related to tire time tire polymer matrix needs to accommodate tire stmctural changes induced by tire progression of tire penetrant. [Pg.2537]

The nematic to smectic A phase transition has attracted a great deal of theoretical and experimental interest because it is tire simplest example of a phase transition characterized by tire development of translational order [88]. Experiments indicate tliat tire transition can be first order or, more usually, continuous, depending on tire range of stability of tire nematic phase. In addition, tire critical behaviour tliat results from a continuous transition is fascinating and allows a test of predictions of tire renonnalization group tlieory in an accessible experimental system. In fact, this transition is analogous to tire transition from a nonnal conductor to a superconductor [89], but is more readily studied in tire liquid crystal system. [Pg.2558]

A constitutive equation is a relation between the extra stress (t) and the rate of deformation that a fluid experiences as it flows. Therefore, theoretically, the constitutive equation of a fluid characterises its macroscopic deformation behaviour under different flow conditions. It is reasonable to assume that the macroscopic behaviour of a fluid mainly depends on its microscopic structure. However, it is extremely difficult, if not impossible, to establish exact quantitative... [Pg.3]

The understanding of retention and selectivity behaviour in reversed-phase HPLC in order to control and predict chromatographic properties ai e interesting for both academic scientists and manufacturers. A number of retention and selectivity models are the subject of ongoing debate. The theoretical understanding of retention and selectivity, however, still lags behind the practical application of RP HPLC. In fact, many users of RP HPLC techniques very often select stationary phases and other experimental conditions by experience and intuition rather than by objective criteria. [Pg.131]

The factor 6 is a design parameter for all future reference. In fact, this empirical factor has been established over many years of experience and field data collected on the behaviour and performance of a motor in such an unfavourable operating condition. [Pg.278]

Whether or not a polymer is rubbery or glass-like depends on the relative values of t and v. If t is much less than v, the orientation time, then in the time available little deformation occurs and the rubber behaves like a solid. This is the case in tests normally carried out with a material such as polystyrene at room temperature where the orientation time has a large value, much greater than the usual time scale of an experiment. On the other hand if t is much greater than there will be time for deformation and the material will be rubbery, as is normally the case with tests carried out on natural rubber at room temperature. It is, however, vital to note the dependence on the time scale of the experiment. Thus a material which shows rubbery behaviour in normal tensile tests could appear to be quite stiff if it were subjected to very high frequency vibrational stresses. [Pg.45]


See other pages where Experiments, behavioural is mentioned: [Pg.125]    [Pg.406]    [Pg.125]    [Pg.406]    [Pg.218]    [Pg.845]    [Pg.28]    [Pg.77]    [Pg.134]    [Pg.1010]    [Pg.1034]    [Pg.1499]    [Pg.1509]    [Pg.1548]    [Pg.1573]    [Pg.1934]    [Pg.1957]    [Pg.2367]    [Pg.2376]    [Pg.2394]    [Pg.2474]    [Pg.2560]    [Pg.2668]    [Pg.2669]    [Pg.3064]    [Pg.222]    [Pg.358]    [Pg.701]    [Pg.717]    [Pg.9]    [Pg.151]    [Pg.85]    [Pg.26]    [Pg.188]    [Pg.47]    [Pg.158]   


SEARCH



© 2024 chempedia.info