Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimentals thin film processing

Another evaporation technique is molecular beam epitaxy (MBE). MBE produces extremely pure and very thin films with abrupt composition changes and is being considered for extremely exacting electronic and optoelectronic applications. PI However, the deposition rate is very slow and the process is still considered experimental. [Pg.492]

Adsorbed layers, thin films of oxides, or other compounds present on the metal surface aggravate the pattern of deactivation of metastable atoms. The adsorption changes the surface energy structure. Besides, dense layers of adsorbate may hamper the approach of metastable atom sufficiently close to the metal to suppress thus the process of resonance ionization. An example can be work [130], in which a transition from a two- to one-electron mechanism during deactivation of He atoms is exemplified by the Co - Pd system (111). The experimental material on the interaction of metastable atoms with an adsorption-coated surface of... [Pg.321]

Reaction-diffusion systems can readily be modeled in thin layers using CA. Since the transition rules are simple, increases in computational power allow one to add another dimension and run simulations at a speed that should permit the simulation of meaningful behavior in three dimensions. The Zaikin-Zhabotinsky reaction is normally followed in the laboratory by studying thin films. It is difficult to determine experimentally the processes occurring in all regions of a three-dimensional segment of excitable media, but three-dimensional simulations will offer an interesting window into the behavior of such systems in the bulk. [Pg.199]

Porous ultrafine tin oxide ethanol gas sensors92 in the form of a thin film have been prepared from tin alkoxide by the sol-gel process. The microstructural evolution of the tin oxide films, which affected the ethanol gas-sensing properties of the films, was investigated as a function of firing temperature and solution concentration. Theoretically, it was expected that ethanol gas sensitivity would increase monotonically with decreasing film thickness, but experimental results showed a maximum sensitivity at about 70 nm. The sudden decrease of the sensitivity below the thickness of 70 nm seemed to be due to the sudden decrease of film porosity, i.e., the sudden decrease of the number of the available sites for the oxidation reaction of ethanol molecules. Thus, it seemed that below the thickness of 70 nm, the sensitivity was governed by microstructure rather than by film thickness. [Pg.374]

Because of the complexities involved in understanding cause-effect relationships, an alternative approach to control the thin film microstructure has been pursued by some investigators—the use of statistically designed experiments to identify key processing parameters.114115 In these approaches, as illustrated in Table 2.6 for a Plackett-Burman screening study,114 limiting values for various experimental parameters are chosen. Films are then prepared from solutions synthesized under these conditions, and resulting film... [Pg.61]

The effects of mercury film electrode morphology in the anodic stripping SWV of electrochemically reversible and quasi-reversible processes were investigated experimentally [47-51], Mercury electroplated onto solid electrodes can take the form of either a uniform thin film or an assembly of microdroplets, which depends on the substrate [51 ]. At low sqtrare-wave frequencies the relationship between the net peak crrrrent and the frequency can be described by the theory developed for the thin-film electrode because the diffusion layers at the snrface of microdroplets are overlapped and the mass transfer can be approximated by the planar diffusion model [47,48],... [Pg.38]

Dukler (D12) and Zhivaikin and Volgin.(Z4) have pointed out that the transition to turbulence in a thin film is likely to be a gradual process, so that it is not reasonable to expect a single, sharply defined critical Reynolds number. The scatter in the experimental values of NRe it tabulated below can be explained in this way. However, the bulk of the evidence... [Pg.185]

In this paper, an overview of the origin of second-order nonlinear optical processes in molecular and thin film materials is presented. The tutorial begins with a discussion of the basic physical description of second-order nonlinear optical processes. Simple models are used to describe molecular responses and propagation characteristics of polarization and field components. A brief discussion of quantum mechanical approaches is followed by a discussion of the 2-level model and some structure property relationships are illustrated. The relationships between microscopic and macroscopic nonlinearities in crystals, polymers, and molecular assemblies are discussed. Finally, several of the more common experimental methods for determining nonlinear optical coefficients are reviewed. [Pg.37]

The study and control of a chemical process may be accomplished by measuring the concentrations of the reactants and the properties of the end-products. Another way is to measure certain quantities that characterize the conversion process, such as the quantity of heat output in a reaction vessel, the mass of a reactant sample, etc. Taking into consideration the special features of the chemical molding process (transition from liquid to solid and sometimes to an insoluble state), the calorimetric method has obvious advantages both for controlling the process variables and for obtaining quantitative data. Calorimetric measurements give a direct correlation between the transformation rates and heat release. This allows to monitor the reaction rate by observation of the heat release rate. For these purposes, both isothermal and non-isothermal calorimetry may be used. In the first case, the heat output is effectively removed, and isothermal conditions are maintained for the reaction. This method is especially successful when applied to a sample in the form of a thin film of the reactant. The temperature increase under these conditions does not exceed IK, and treatment of the experimental results obtained is simple the experimental data are compared with solutions of the differential kinetic equation. [Pg.97]

Previous studies on paraffins, rhodamine dyes, and l,3-bis(N-carbozoyl) propane excimers have concluded that there is a relationship between km and polymer viscosity and free volume [103-105], Indeed, this dependence has been investigated in the context of decreasing free volume during methyl methacrylate polymerization [83,84], It has been shown that the nonradiative decay processes follow an exponential relationship with polymer free volume (vf), in which kra reduces as free volume is decreased [see Eq. (5)]. Here, k. represents the intrinsic rate of molecular nonradiative relaxation, v0 is the van der Waals volume of the probe molecule, and b is a constant that is particular to the probe species. Clearly, the experimentally observed changes in both emission intensity and lifetime for/ac-ClRe(CO)3(4,7-Ph2-phen) in the TMPTA/PMMA thin film are entirely consistent with this rationale. [Pg.235]


See other pages where Experimentals thin film processing is mentioned: [Pg.399]    [Pg.243]    [Pg.281]    [Pg.181]    [Pg.88]    [Pg.316]    [Pg.21]    [Pg.103]    [Pg.148]    [Pg.32]    [Pg.410]    [Pg.451]    [Pg.53]    [Pg.132]    [Pg.545]    [Pg.382]    [Pg.199]    [Pg.230]    [Pg.71]    [Pg.325]    [Pg.138]    [Pg.277]    [Pg.166]    [Pg.208]    [Pg.152]    [Pg.6]    [Pg.149]    [Pg.59]    [Pg.281]    [Pg.25]    [Pg.181]    [Pg.40]    [Pg.281]    [Pg.792]    [Pg.27]    [Pg.265]    [Pg.210]    [Pg.287]    [Pg.188]    [Pg.219]    [Pg.236]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Experimental film

Experimental process

Film processing

Film processing process

Thin processing

Thin-film processing

© 2024 chempedia.info