Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear optics determinations

Luce T A and Bennemann K H 1998 Nonlinear optical response of noble metals determined from first-principles electronic structures and wave functions calculation of transition matrix elements P/rys. Rev. B 58 15 821-6... [Pg.1302]

Most of the envisioned practical applications for nonlinear optical materials would require solid materials. Unfortunately, only gas-phase calculations have been developed to a reliable level. Most often, the relationship between gas-phase and condensed-phase behavior for a particular class of compounds is determined experimentally. Theoretical calculations for the gas phase are then scaled accordingly. [Pg.256]

The linear polarizability, a, describes the first-order response of the dipole moment with respect to external electric fields. The polarizability of a solute can be related to the dielectric constant of the solution through Debye s equation and molar refractivity through the Clausius-Mosotti equation [1], Together with the dipole moment, a dominates the intermolecular forces such as the van der Waals interactions, while its variations upon vibration determine the Raman activities. Although a corresponds to the linear response of the dipole moment, it is the first quantity of interest in nonlinear optics (NLO) and particularly for the deduction of stracture-property relationships and for the design of new... [Pg.95]

Acentricity greatly enhances the y-value (see 92 vs 91 and 90 or 101 vs 99 and 100, Fig. 8). Such a trend had been predicted for certain ranges of compounds by theory [137] however when the first hyperpolarizability, which determines second-order nonlinear optical properties, is maximized, y is predicted to be zero [138]. [Pg.72]

In the previous Maxwelhan description of X-ray diffraction, the electron number density n(r, t) was considered to be a known function of r,t. In reality, this density is modulated by the laser excitation and is not known a priori. However, it can be determined using methods of statistical mechanics of nonlinear optical processes, similar to those used in time-resolved optical spectroscopy [4]. The laser-generated electric field can be expressed as E(r, t) = Eoo(0 exp(/(qQr ot)), where flo is the optical frequency and q the corresponding wavevector. The calculation can be sketched as follows. [Pg.267]

In recent years research in the field of transition-metal thiocyanates and selenocyanates received a new impetus, because of the partly interesting physical properties of such crystalline species. A review on Cd and Hg thiocyanate systems collects and sorts results of this endeavor.371 The nonlinear optical (NLO) properties of Cd thiocyanate and selenocyanate systems and criteria for the design of NLO crystals (crystal engineering), especially, have been discussed afterwards.372 Further contributions to the field have also been described.37, 374 The structure of mercury chlorothiocyanate has been re-determined.375... [Pg.1284]

The term nonlinear optical property refers to an optical property, which can be modified by exposing the material to intense light irradiation. In this section, we focus on the cascaded first- (/ 1 ) and third-order ( / ) susceptibilities describing nonlinear absorption (ESA and 2PA) and nonlinear refraction (n2) processes. Z-scan, pump-probe, and two-photon upconverted fluorescence techniques are among the most used experimental methods for determining optical nonlinearities. [Pg.119]

In conclusion, we stress that the complementary NLO characterization techniques of pump-probe, Z-scan, and 2PF allow for the unambiguous determination of nonlinear optical processes in organic materials. The important molecular parameters of 2PA cross section, fluorescence efficiency, reorientation lifetimes, excited state cross sections, etc. can be determined. [Pg.125]

The discussion in this chapter is limited to cyanine-like NIR conjugated molecules, and further, is limited to discussing their two-photon absorption spectra with little emphasis on their excited state absorption properties. In principle, if the quantum mechanical states are known, the ultrafast nonlinear refraction may also be determined, but that is outside the scope of this chapter. The extent to which the results discussed here can be transferred to describe the nonlinear optical properties of other classes of molecules is debatable, but there are certain results that are clear. Designing molecules with large transition dipole moments that take advantage of intermediate state resonance and double resonance enhancements are definitely important approaches to obtain large two-photon absorption cross sections. [Pg.142]

Except through the study of linear and nonlinear optical properties of molecular crystals, methods to determine the nature of / require evaluation of appropriate characteristics of... [Pg.35]

The linear and nonlinear optical properties of the conjugated polymeric crystals are reviewed. It is shown that the dimensionality of the rr-electron distribution and electron-phonon interaction drastically influence the order of magnitude and time response of these properties. The one-dimensional conjugated crystals show the strongest nonlinearities their response time is determined by the diffusion time of the intrinsic conjugation defects whose dynamics are described within the soliton picture. [Pg.167]

By extension one may say that the power laws (5-7) which determine the magnitude of the linear and nonlinear optical coefficients are consequences of this strong electron-lattice coupling. We now make the conjecture that the time response of these coefficients is severely affected by the dynamics of the electron-lattice coupling in conjugated chains when two or more resonant chemical structures can coexist this is the case for many of the organic chains of Figure 2. [Pg.179]

The nonlinear optical properties are determined using resonance Raman scattering, coherent antistokes Raman scattering and coherent stokes Raman scattering. The two-photon polarizability is found to be very large in these materials. General... [Pg.187]

Symmetry is one of the most important issues in the field of second-order nonlinear optics. As an example, we will briefly demonstrate a method to determine the number of independent tensor components of a centrosymmetric medium. One of the symmetry elements present in such a system is a center of inversion that transforms the coordinates xyz as ... [Pg.525]

It is important to note that the coefficients fp, gp, and hs are always nonvanishing, for both achiral and chiral isotropic films. On the other hand, fs, gs, and hp can only be nonvanishing if the isotropic film is chiral (nonracemic) because they completely depend on the chiral susceptibility components. Note that gs is always equal to zero within the electric dipole approximation. The sign of the chiral expansion coefficients changes between enantiomers, while that of the achiral expansion coefficients stays the same. Experimental determination of all expansion coefficients fully characterizes the nonlinearity and nonlinear optical activity of the sample. Once all expansion coefficients are... [Pg.534]

One result of studying nonlinear optical phenomena is, for instance, the determination of this susceptibility tensor, which supplies information about the anharmonicity of the potential between atoms in a crystal lattice. A simple electrodynamic model which relates the anharmonic motion of the bond charge to the higher-order nonlinear susceptibilities has been proposed by Levine The application of his theory to calculations of the nonlinearities in a-quarz yields excellent agreement with experimental data. [Pg.58]

The electronic structure of fluorenes and the development of their linear and nonlinear optical structure-property relationships have been the subject of intense investigation [20-22,25,30,31]. Important parameters that determine optical properties of the molecules are the magnitude and alignment of the electronic transition dipole moments [30,31]. These parameters can be obtained from ESA and absorption anisotropy spectra [32,33] using the same pump-probe laser techniques described above (see Fig. 9). A comprehensive theoretical analysis of a two beam (piunp and probe) laser experiment was performed [34], where a general case of induced saturated absorption anisotropy was considered. From this work, measurement of the absorption anisotropy of molecules in an isotropic ensemble facilitates the determination of the angle between the So Si (pump) and Si S (probe) transitions. The excited state absorption anisotropy, rabs> is expressed as [13] ... [Pg.116]


See other pages where Nonlinear optics determinations is mentioned: [Pg.257]    [Pg.513]    [Pg.147]    [Pg.78]    [Pg.114]    [Pg.158]    [Pg.161]    [Pg.349]    [Pg.119]    [Pg.134]    [Pg.51]    [Pg.89]    [Pg.113]    [Pg.168]    [Pg.538]    [Pg.544]    [Pg.554]    [Pg.557]    [Pg.567]    [Pg.317]    [Pg.171]    [Pg.530]    [Pg.212]    [Pg.354]    [Pg.72]    [Pg.241]    [Pg.270]    [Pg.89]   
See also in sourсe #XX -- [ Pg.550 , Pg.551 , Pg.552 , Pg.553 ]




SEARCH



Electronic molecular nonlinear optical determination

© 2024 chempedia.info