Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental reaction temperature

Direct dynamics calculations were carried out with quasiclassical normalmode sampling from a canonical ensemble at 923 K (the experimental reaction temperature). Simulations initiated at the vicinity of TS for rearrangement of carbene 13 to 14 via oxirene 12, and 300 trajectories were obtained at DFT methods. The preliminary results reported in the manuscript showed that preferred formation of 15a over 15b by the ratio of 1.8 7.6 depends on the method used. The results were qualitatively consistent with the value of 2.5 deduced from the experiment. The non-unity ratio likely arises from the situation that two methyl groups in 14 are dynamically unequal on the carbene formation process. [Pg.188]

In general, AGF (Tref) values are based on calculations from direct experimental reactions of the elements to form the compound and from specific heat and related calorimetric measurements on each species, which allows correction of the data from Texp (the experimental reaction temperature) to Tref. Tabulations of AG j (0 K) or AG j (298 K) for reactions and of the specific heats of reactants and products to allow temperature corrections form the source from which many chemical thermodynamic calculations are made (Ref 2). [Pg.27]

Fig. 6. The three ideal zones (I—III) representing the rate of change of reaction for a porous carbon with increasing temperature where a and b are intermediate zones, is activation energy, and -E is tme activation energy. The effectiveness factor, Tj, is a ratio of experimental reaction rate to reaction rate which would be found if the gas concentration were equal to the atmospheric gas concentration (80). Fig. 6. The three ideal zones (I—III) representing the rate of change of reaction for a porous carbon with increasing temperature where a and b are intermediate zones, is activation energy, and -E is tme activation energy. The effectiveness factor, Tj, is a ratio of experimental reaction rate to reaction rate which would be found if the gas concentration were equal to the atmospheric gas concentration (80).
Since the Fries rearrangement is a equilibrium reaction, the reverse reaction may be used preparatively under appropriate experimental conditions. An instructive example, which shows how the regioselectivity depends on the reaction temperature, is the rearrangement of m-cresyl acetate 8. At high temperatures the ortho-product 9 is formed, while below 100°C the para-derivative 10 is formed ... [Pg.128]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Stability of the colour. The colour produced should be sufficiently stable to permit an accurate reading to be taken. This applies also to those reactions in which colours tend to reach a maximum after a time the period of maximum colour must be long enough for precise measurements to be made. In this connection the influence of other substances and of experimental conditions (temperature, pH, stability in air, etc.) must be known. [Pg.673]

Moreover, these studies were carried out to very high conversions (99.9%) even when no catalyst was added. Evaporation of reactants (at least 0.1% of initial quantity) cannot be avoided, particularly in the case studied by Lin since the reaction temperature was 15 °C below the boiling point of the diol. Consequently, errors in experimental data obtained by Lin for the ultimate stages of the reaction can be as high as 50 to 100%. [Pg.82]

At first glance, the HRC scheme appears simple the polymer is activated, dissolved, and then submitted to derivatization. hi a few cases, polymer activation and dissolution is achieved in a single step. This simplicity, however, is deceptive as can be deduced from the following experimental observations In many cases, provided that the ratio of derivatizing agent/AGU employed is stoichiometric, the targeted DS is not achieved the reaction conditions required (especially reaction temperature and time) depend on the structural characteristics of cellulose, especially its DP, purity (in terms of a-cellulose content), and Ic. Therefore, it is relevant to discuss the above-mentioned steps separately in order to understand their relative importance to ester formation, as well as the reasons for dependence of reaction conditions on cellulose structural features. [Pg.109]

Peaking and Non-isothermal Polymerizations. Biesenberger a (3) have studied the theory of "thermal ignition" applied to chain addition polymerization and worked out computational and experimental cases for batch styrene polymerization with various catalysts. They define thermal ignition as the condition where the reaction temperature increases rapidly with time and the rate of increase in temperature also increases with time (concave upward curve). Their theory, computations, and experiments were for well stirred batch reactors with constant heat transfer coefficients. Their work is of interest for understanding the boundaries of stability for abnormal situations like catalyst mischarge or control malfunctions. In practice, however, the criterion for stability in low conversion... [Pg.75]

Initial comparison of CFSTR runs with similar feed conditions indicates conditions for which the monomer conversion may be dependent on mixing speed. However, when the effects of experimental error in monomer conversion and differences in reaction temperature are considered, the monomer conversion is seen to be relatively independent of mixing speed for rpm equal to or greater than 500. Comparing Run 14 with Run 12 reveals a small decrease in monomer conversion in spite of a rise in reactor temperature of 2°C. This indicated the presence of a small amount of bypassing or dead volume at the lower mixing speed. This imperfect mixing pattern would also be present in Run 15. [Pg.321]

The experimental reaction rate computations based on equation (4) are primarily functions of the computed average solution temperature (T ). The kinetic model rate computations based on equation (1) or (2) are primarily functions of both "T " as well as the estimated conversion(s). Earlier we explained why we expected decreasing accuracies of estimating both the conversions and the average solution temperature in Tests 1, 2 and 3 respectively. [Pg.353]

On the basis of the experimental results, Sn02-Zr02 catalysts were prepared by the coprecipitation method. That is, Sn02 and Z1O2 were mixed chemically rather than physically. The effects of the Sn/Zr molar ratio and reaction temperature on the SO2 conversion and sulfur yield for Sn02-Zr02 catalysts were... [Pg.251]

The plastic samples used in this study were palletized to a form of 2.8 3.2min in diameter. The molecular weights of LDPE and HDPE were 196,000 and 416,000, respectively. The waste catalysts used as a fine powder form. The ZSM-5 was used a petroleum refinement process and the RFCC was used in a naphtha cracking process. The BET surface area of ZSM-5 was 239.6 m /g, whose micropore and mesopore areas were 226.2 m /g and 13.4 m /g, respectively. For the RFCC, the BET surface area was 124.5 m /g, and micropore and mesopore areas were 85.6 m /g and 38.89 m /g, respectively. The experimental conditions applied are as follows the amount of reactant and catalyst are 125 g and 1.25-6.25 g, respectively. The flow rate of nitrogen stream is 40 cc/min, and the reaction temperature and heating rate are 300-500 C and 5 C/ min, respectively. Gas products were vented after cooling by condenser to -5 °C. Liquid products were collected in a reservoir over a period of... [Pg.429]

The final structure of resins produced depends on the reaction condition. Formaldehyde to phenol (F/P) and hydroxyl to phenol (OH/P) molar ratios as well as ruction temperahne were the most important parameters in synthesis of resols. In this study, the effect of F/P and OH/P wt%, and reaction temperature on the chemical structure (mono-, di- and trisubstitution of methyrol group, methylene bridge, phenolic hemiformals, etc.) was studied utilizing a two-level full factorial experimental design. The result obtained may be applied to control the physical and chemical properties of pre-polymer. [Pg.869]

A two levels of full factorial experimental design with three independent variables were generated with one center point, which was repeated[3]. In this design, F/P molar ratio, Oh/P wt%, and reaction temperature were defined as independent variables, all receiving two values, a high and a low value. A cube like model was formed, with eight comers. One center point (repeated twice) was added to improve accuracy of the design. Every analysis results were treated as a dependent result in the statistical study. [Pg.869]

A two level full factorial experimental design with three variables, F/P molar ratio, OH/P wt %, and reaction temperature was implemented to analyses the effect of variables on the synthesis reaction of PF resol resin. Based on the composition of 16 components of 10 samples, the effect of three independent variables on the chemical structure was anal3 ed by using 3 way ANOVA of SPSS. The present study provides that experimental design is a very valuable and capable tool for evaluating multiple variables in resin production. [Pg.872]

OS 32] ]R 16a] ]P 23]Toluene nitration rates determined in the capillary-flow reactor were generally higher than benzene nitration rates [31, 97]. This is not surprising, as it stems from the higher reactivity of toluene towards electrophilic substitution owing to its more electron-rich aromatic core. For instance, at a reaction temperature of 60 °C, rates of 6 and 2 min were found for toluene and benzene nitration, respectively. However, care has to be taken when quantitatively comparing these results, since experimental details and tube diameters vary to a certain extent or are not even listed completely. [Pg.457]

The experimental conditions which can be set by the operator are the initial concentrations of A and B and the reaction temperature T. For simplicity the initial concentration of B is assumed to be zero, i.e., we always start with pure A. The operability region is shown in Figure 12.2 on the xo rT plane where xa, takes values from 1 to 4 g/L and T from 370 to 430 K. [Pg.202]


See other pages where Experimental reaction temperature is mentioned: [Pg.910]    [Pg.910]    [Pg.222]    [Pg.288]    [Pg.910]    [Pg.910]    [Pg.222]    [Pg.288]    [Pg.393]    [Pg.216]    [Pg.487]    [Pg.659]    [Pg.551]    [Pg.288]    [Pg.289]    [Pg.30]    [Pg.309]    [Pg.321]    [Pg.78]    [Pg.106]    [Pg.173]    [Pg.176]    [Pg.204]    [Pg.251]    [Pg.438]    [Pg.450]    [Pg.502]    [Pg.531]    [Pg.477]    [Pg.75]    [Pg.445]    [Pg.106]    [Pg.577]    [Pg.14]    [Pg.88]    [Pg.90]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



© 2024 chempedia.info