Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate kinetic modelling

The replenishment of the vacancy can be directly from the gas phase or indirectly from the catalyst. In the latter case, the oxygen mobility within the catalyst is so large that bulk oxygen can diffuse to the vacancy. Then oxygen from the gas phase reoxidizes the lattice on sites which differ from hydrocarbon reaction sites. In a steady state, the rate of catalyst oxidation will be equal to the rate of reduction by the substrate. The steady state degree of reduction, equivalent to the surface coverage with oxygen, is determined by the ratio of these two rates. Kinetic models based on these principles are called redox models, for which the simplest mathematical expression is... [Pg.125]

The adsorption of methylene blue by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature. Equilibrium adsorption data obeyed Langmuir isotherm. Adsorption kinetics followed a second order rate kinetic model. The adsorption capacity was found to be 5.87 mg dye per g of the adsorbent. There was no significant change in the per cent removal with pH. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. [Pg.339]

The equality of the specific growth rate and the dilution rate of the steady-state CSTB is helpful in studying the effects of various components of the medium on the specific growth rate. By measuring the steady-state substrate concentration at various flow rates, kinetic models can be tested and the value of the kinetic parameters can be estimated. By rearranging Equation (19.47), a linear relationship can be obtained as follows ... [Pg.1524]

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]

Lin C Y and Dunbar R C 1994 Time-resolved photodissociation rates and kinetic modeling for unimolecular dissociations of iodotoluene ions J. Rhys. Chem. 98 1369-75... [Pg.1360]

The BET treatment is based on a kinetic model of the adsorption process put forward more than sixty years ago by Langmuir, in which the surface of the solid was regarded as an array of adsorption sites. A state of dynamic equilibrium was postulated in which the rate at which molecules arriving from the gas phrase and condensing on to bare sites is equal to the rate at which molecules evaporate from occupied sites. [Pg.42]

The first quantitative model, which appeared in 1971, also accounted for possible charge-transfer complex formation (45). Deviation from the terminal model for bulk polymerization was shown to be due to antepenultimate effects (46). Mote recent work with numerical computation and C-nmr spectroscopy data on SAN sequence distributions indicates that the penultimate model is the most appropriate for bulk SAN copolymerization (47,48). A kinetic model for azeotropic SAN copolymerization in toluene has been developed that successfully predicts conversion, rate, and average molecular weight for conversions up to 50% (49). [Pg.193]

Kinetic models describing the overall polymerization rate, E, have generally used equations of the following form ... [Pg.413]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

The activity of antioxidants in food [ 1 ] emulsions and in some biological systems [2] is depends on a multitude of factors including the localisation of the antioxidant in the different phases of the system. The aim of this study is determining antioxidant distributions in model food emulsions. For the purpose, we measured electrochemically the rate constant of hexadecylbenzenediazonium tetrafluorborate (16-ArN,BF ) with the antioxidant, and applied the pseudophase kinetic model to interpret the results. [Pg.139]

The present author was worried about the lack of knowledge concerning the quality of the kinetic models used in the industry. A model is by definition a small, scaled-down imitation of the real thing. (Men should remember tliis when their mothers-in-law call them model husbands.) In the industry all we require from a kinetic model is that it describe the chemical rate adequately by using traditional mathematical forms (Airhenius law, power law expressions and combinations of these) within the limits of its applications. Neither should it rudely violate the known laws of science. [Pg.117]

Cropley made general recommendations to develop kinetic models for compUcated rate expressions. His approach includes first formulating a hyperbolic non-linear model in dimensionless form by linear statistical methods. This way, essential terms are identified and others are rejected, to reduce the number of unknown parameters. Only toward the end when model is reduced to the essential parts is non-linear estimation of parameters involved. His ten steps are summarized below. Their basis is a set of rate data measured in a recycle reactor using a sixteen experiment fractional factorial experimental design at two levels in five variables, with additional three repeated centerpoints. To these are added two outlier... [Pg.140]

Remarks The aim here was not the description of the mechanism of the real methanol synthesis, where CO2 may have a significant role. Here we created the simplest mechanistic scheme requiring only that it should represent the known laws of thermodynamics, kinetics in general, and mathematics in exact form without approximations. This was done for the purpose of testing our own skills in kinetic modeling and reactor design on an exact mathematical description of a reaction rate that does not even invoke the rate-limiting step assumption. [Pg.225]

Analysis of the rate equation and kinetic model of the conversion of glucose to gluconic acid is discussed in Chapter 11. [Pg.9]

Among the dynamical properties the ones most frequently studied are the lateral diffusion coefficient for water motion parallel to the interface, re-orientational motion near the interface, and the residence time of water molecules near the interface. Occasionally the single particle dynamics is further analyzed on the basis of the spectral densities of motion. Benjamin studied the dynamics of ion transfer across liquid/liquid interfaces and calculated the parameters of a kinetic model for these processes [10]. Reaction rate constants for electron transfer reactions were also derived for electron transfer reactions [11-19]. More recently, systematic studies were performed concerning water and ion transport through cylindrical pores [20-24] and water mobility in disordered polymers [25,26]. [Pg.350]

The rate constant /ct, determined by means of Eq. (6-47) or (6-48), may describe either general base or nucleophilic catalysis. To distinguish between these possibilities requires additional information. For example, in Section 3.3, we described a kinetic model for the N-methylimidazole-catalyzed acetylation of alcohols and experimental designs for the measurement of catalytic rate constants. These are summarized in Scheme XVIIl of Section 3.3, which we present here in slightly different form. [Pg.271]

A feed concentration of 15 g glucose and 15 g xylose per litre was used over a feed rate of 20-200 ml/hr. Samples were taken at successive points along the reactor length, and the usual analysis for glucose and xylose consumption, organic acid production and cell density were done. A kinetic model for the growth and fermentation of P. acidipropionici was obtained from these data. [Pg.203]

A Langmuir-Hanes plot based on the Monod rate equation is presented in Figure 8.7. The Monod kinetic model can be used for microbial cell biocatalyst and is described as follows ... [Pg.218]

Our initial experimental results indicated that the kinetic model— first order in liquid phase CO concentration—was the leading candidate. We designed an experimental program specifically for this reaction model. The integrated rate expression (see Appendix for nomenclature) can be written as ... [Pg.163]

The development of methods for the kinetic measurement of heterogeneous catalytic reactions has enabled workers to obtain rate data of a great number of reactions [for a review, see (1, )]. The use of a statistical treatment of kinetic data and of computers [cf. (3-7) ] renders it possible to estimate objectively the suitability of kinetic models as well as to determine relatively accurate values of the constants of rate equations. Nevertheless, even these improvements allow the interpretation of kinetic results from the point of view of reaction mechanisms only within certain limits ... [Pg.1]

The preferred kinetic model for the metathesis of acyclic alkenes is a Langmuir type model, with a rate-determining reaction between two adsorbed (complexed) molecules. For the metathesis of cycloalkenes, the kinetic model of Calderon as depicted in Fig. 4 agrees well with the experimental results. A scheme involving carbene complexes (Fig. 5) is less likely, which is consistent with the conclusion drawn from mechanistic considerations (Section III). However, Calderon s model might also fit the experimental data in the case of acyclic alkenes. If, for instance, the concentration of the dialkene complex is independent of the concentration of free alkene, the reaction will be first order with respect to the alkene. This has in fact been observed (Section IV.C.2) but, within certain limits, a first-order relationship can also be obtained from many hyperbolic models. Moreover, it seems unreasonable to assume that one single kinetic model could represent the experimental results of all systems under consideration. Clearly, further experimental work is needed to arrive at more definite conclusions. Especially, it is necessary to investigate whether conclusions derived for a particular system are valid for all catalyst systems. [Pg.168]


See other pages where Rate kinetic modelling is mentioned: [Pg.163]    [Pg.190]    [Pg.339]    [Pg.275]    [Pg.163]    [Pg.190]    [Pg.339]    [Pg.275]    [Pg.267]    [Pg.368]    [Pg.49]    [Pg.515]    [Pg.230]    [Pg.504]    [Pg.2079]    [Pg.105]    [Pg.12]    [Pg.133]    [Pg.222]    [Pg.377]    [Pg.561]    [Pg.270]    [Pg.270]    [Pg.31]    [Pg.205]    [Pg.208]    [Pg.210]    [Pg.25]    [Pg.262]    [Pg.8]    [Pg.43]    [Pg.161]    [Pg.419]    [Pg.217]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



Diffusion-controlled model kinetic rate

Enhanced kinetic development rate model

Interpretation of Heterogeneous Kinetic Rate Data Via Hougen-Watson Models

Kinetic development rate model

Kinetic model rate constant estimation

Kinetic modeling pseudo first order reaction rate

Kinetic modeling rate equations

Kinetic modeling zero order reaction rate

Kinetic models diffusion rate constant

Kinetic models equilibrium rate

Kinetic models intra-particle diffusion, rates

Kinetic rates

Kinetic theory modeling energy dissipation rate

Kinetics rate model

Kinetics rate model

Models rate model

Rate Equations and Kinetic Models

Rate Kinetics

Ratings models

© 2024 chempedia.info