Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastics, high-crystalline

Polyoxyethylene. Synthetic polymers with a variety of compositionaHy similar chemical stmctures are as follows. Based on polarity, poly(oxymethylene) (1) would be expected to be water soluble. It is a highly crystalline polymer used in engineering plastics, but it is not water-soluble (see... [Pg.315]

Second, in the early 1950s, Hogan and Bank at Phillips Petroleum Company, discovered (3,4) that ethylene could be catalyticaHy polymerized into a sohd plastic under more moderate conditions at a pressure of 3—4 MPa (435—580 psi) and temperature of 70—100°C, with a catalyst containing chromium oxide supported on siUca (Phillips catalysts). PE resins prepared with these catalysts are linear, highly crystalline polymers of a much higher density of 0.960—0.970 g/cnr (as opposed to 0.920—0.930 g/cnf for LDPE). These resins, or HDPE, are currentiy produced on a large scale, (see Olefin polymers, HIGH DENSITY POLYETHYLENE). [Pg.367]

The plasticizer content of a polymer may be increased by the suppression of crystallization in the polymer, but if crystallization subsequently occurs the plasticizer exudes. For highly crystalline resins, the small amounts of plasticizer allowable can change the nature of the small amorphous regions with a consequent overall change in properties. [Pg.129]

Similarly, the random introduction by copolymerization of stericaHy incompatible repeating unit B into chains of crystalline A reduces the crystalline melting point and degree of crystallinity. If is reduced to T, crystals cannot form. Isotactic polypropylene and linear polyethylene homopolymers are each highly crystalline plastics. However, a random 65% ethylene—35% propylene copolymer of the two, poly(ethylene- (9-prop5lene) is a completely amorphous ethylene—propylene mbber (EPR). On the other hand, block copolymers of the two, poly(ethylene- -prop5iene) of the same overall composition, are highly crystalline. X-ray studies of these materials reveal both the polyethylene lattice and the isotactic polypropylene lattice, as the different blocks crystallize in thek own lattices. [Pg.434]

The effect of copolymer composition on gas permeability is shown in Table 9. The inherent barrier in VDC copolymers can best be exploited by using films containing Htde or no plasticizers and as much VDC as possible. However, the permeabiUty of even completely amorphous copolymers, for example, 60% VDC—40% AN or 50% VDC—50% VC, is low compared to that of other polymers. The primary reason is that diffusion coefficients of molecules in VDC copolymers are very low. This factor, together with the low solubiUty of many gases in VDC copolymers and the high crystallinity, results in very low permeabiUty. PermeabiUty is affected by the kind and amounts of comonomer as well as crystallinity. A change from PVDC to 50 wt °/ VC or 40 wt % AN increases permeabiUty 10-fold, but has Httle effect on the solubiUty coefficient. [Pg.435]

An important subdivision within the thermoplastic group of materials is related to whether they have a crystalline (ordered) or an amorphous (random) structure. In practice, of course, it is not possible for a moulded plastic to have a completely crystalline structure due to the complex physical nature of the molecular chains (see Appendix A). Some plastics, such as polyethylene and nylon, can achieve a high degree of crystallinity but they are probably more accurately described as partially crystalline or semi-crystalline. Other plastics such as acrylic and polystyrene are always amorphous. The presence of crystallinity in those plastics capable of crystallising is very dependent on their thermal history and hence on the processing conditions used to produce the moulded article. In turn, the mechanical properties of the moulding are very sensitive to whether or not the plastic possesses crystallinity. [Pg.4]

Liquid crystal polymers (LCP) are a recent arrival on the plastics materials scene. They have outstanding dimensional stability, high strength, stiffness, toughness and chemical resistance all combined with ease of processing. LCPs are based on thermoplastic aromatic polyesters and they have a highly ordered structure even in the molten state. When these materials are subjected to stress the molecular chains slide over one another but the ordered structure is retained. It is the retention of the highly crystalline structure which imparts the exceptional properties to LCPs. [Pg.12]

The operating pressures and shear rates in the extrusion process are considerably lower than they are in molding. As it exits the die, but not necessarily when it leaves the process, the material is in an essentially stress-free condition. Depending on the wall thickness of the material and the particular material, there is orientation of the plastic to a greater or lesser controllable degree. Thin walls produce higher orientation in materials such as PP, that is a highly crystalline polyolefin, and which orients much more than materials such as PVC. [Pg.282]

Dimensional stability is an important thermal property for the majority of plastics. It is the temperature above which plastics lose their dimensional stability. For most plastics the main determinant of dimensional stability is their Tg. Only with highly crystalline plastics is Tg not a limitation. [Pg.397]

Polyethylene, a thermoplastic, is the largest selling plastic material. LDPE is a branched polyethylene whose branches prevent close packing and gives low density. HDPE is polyethylene that has essentially no branching, so the molecules pack very well, which leads to high density and high crystallinity. LLDPE is actually a copolymer prepared at low temperature and low pressure from a mixture of ethylene and about 10% of a C4-C8 olefin. [Pg.110]

However, there seems to be some drawback in the solubility or dispersibility of ion-sensing material in silicone rubber. This is mainly because silicone rubber does not contain a large quantity of plasticizer as the membrane solvent, in which neutral carriers can be dissolved easily, unlike in plasticized-PVC ion-sensing membranes. This issue is serious, especially with silicone-rubber membranes containing neutral carriers that show high crystallinity. Valinomycin, a typical ionophore, seems applicable to silicone-rubber-based K" -selec-tive electrodes [7,8,12-14]. Conventional crown-ether-based neutral carriers are also quite soluble in silicone rubber. [Pg.588]

Except for a lew thermoset materials, most plastics soften at some temperatures, At the softening or heat distortion temperature, plastics become easily deformahle and tend to lose their shape and deform quickly under a Load. Above the heat distortion temperature, rigid amorphous plastics become useless as structural materials. Thus the heat distortion test, which defines The approximate upper temperature at which the material can be Safely used, is an important test (4,5.7.24). As expected, lor amorphous materials the heat distortion temperature is closely related to the glass transition temperature, hut tor highly crystalline polymers the heat distortion temperature is generally considerably higher than the glass transition temperature. Fillers also often raise the heat distortion test well above... [Pg.15]

In terms of the mechanical behavior that has already been described in Sections 5.1 and Section 5.2, stress-strain diagrams for polymers can exhibit many of the same characteristics as brittle materials (Figure 5.58, curve A) and ductile materials (Figure 5.58, curve B). In general, highly crystalline polymers (curve A) behave in a brittle manner, whereas amorphous polymers can exhibit plastic deformation, as in... [Pg.448]

Finally, the use of low-molecular-weight species to improve flow properties called plasticizers normally reduces stiffness, hardness, and brittleness. Plasticization is usually restricted to amorphous polymers or polymers with a low degree of crystallinity because of the limited compatibility of plasticizers with highly crystalline polymers. Other additives, such as antioxidants, do not affect the mechanical properties significantly by themselves, but can substantially improve property retention over long periods of time, particularly where the polymer is subject to environmental degradation. [Pg.467]

Although most unstretched elastomers (cf,2,6) and many plastics (cf,2,8) are amorphous, most fibers are highly crystalline. [Pg.27]


See other pages where Plastics, high-crystalline is mentioned: [Pg.54]    [Pg.120]    [Pg.54]    [Pg.47]    [Pg.54]    [Pg.120]    [Pg.54]    [Pg.47]    [Pg.348]    [Pg.125]    [Pg.235]    [Pg.434]    [Pg.477]    [Pg.716]    [Pg.321]    [Pg.1210]    [Pg.326]    [Pg.50]    [Pg.588]    [Pg.21]    [Pg.201]    [Pg.268]    [Pg.301]    [Pg.201]    [Pg.206]    [Pg.94]    [Pg.98]    [Pg.309]    [Pg.448]    [Pg.633]    [Pg.697]    [Pg.745]    [Pg.453]    [Pg.62]    [Pg.125]    [Pg.235]    [Pg.434]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



© 2024 chempedia.info