Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene poisoning

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

Most refinery/petrochemical processes produce ethylene that contains trace amounts of acetylene, which is difficult to remove even with cryogenic distillation. Frequently it is necessary to lower the acetylene concentration from several hundreds ppm to < 10 ppm in order to avoid poisoning catalysts used in subsequent ethylene consuming processes, such as polymeri2ation to polyethylene. This can be accompHshed with catalytic hydrogenation according to the equation. [Pg.199]

Catalyst lifetime for contemporary ethylene oxide catalysts is 1—2 years, depending on the severity of service, ie, ethylene oxide production rate and absence of feed poisons, primarily sulfur compounds. A large percentage (>95%) of the silver in spent catalysts can be recovered and recycled the other components are usually discarded because of thek low values. [Pg.202]

In all of the ethylene polymerization processes, the catalyst is sensitive to feed impurities and is poisoned by most polar compounds. Many of the properties of the polymer are determined by polymerization conditions, but catalyst composition and condition are critical determinants as well. [Pg.203]

Toxicity of 2-Ghloroethanol. Ethylene chlorohydrin is an irritant and is toxic to the Hver, kidneys, and central nervous system. In addition, it is rapidly absorbed through the skin (73). The vapor is not sufficiently irritating to the eyes and respiratory mucous membranes to prevent serious systemic poisoning. Contact of the Hquid in the eyes of rabbits causes moderately severe injury, but in humans corneal bums have been known to heal within 48 hours. Several human fataUties have resulted from inhalation, dermal contact, or ingestion. One fatahty was caused by exposure to an estimated 300 ppm in air for 2.25 hours. In another fatal case, autopsy revealed pulmonary edema and damage to the Hver, kidneys, and brain (73). [Pg.75]

Raw Material Purity Requirements. The oxygen process has four main raw materials ethylene, oxygen, organic chloride inhibitor, and cycle diluent. The purity requirements are estabHshed to protect the catalyst from damage due to poisons or thermal mnaway, and to prevent the accumulation of undesirable components in the recycle gas. The latter can lead to increased cycle purging, and consequently higher ethylene losses. [Pg.459]

The air process has similar purity requirements to the oxygen process. The ethane content of ethylene is no longer a concern, due to the high cycle purge flow rate. Air purification schemes have been used to remove potential catalyst poisons or other unwanted impurities ia the feed. [Pg.459]

Ethylene Oxide Recovery. An economic recovery scheme for a gas stream that contains less than 3 mol % ethylene oxide (EO) must be designed. It is necessary to achieve nearly complete removal siace any ethylene oxide recycled to the reactor would be combusted or poison the carbon dioxide removal solution. Commercial designs use a water absorber foUowed by vacuum or low pressure stripping of EO to minimize oxide hydrolysis. Several patents have proposed improvements to the basic recovery scheme (176—189). Other references describe how to improve the scmbbiag efficiency of water or propose alternative solvents (180,181). [Pg.459]

The mechanism of poisoning automobile exhaust catalysts has been identified (71). Upon combustion in the cylinder tetraethyllead (TEL) produces lead oxide which would accumulate in the combustion chamber except that ethylene dibromide [106-93-4] or other similar haUde compounds were added to the gasoline along with TEL to form volatile lead haUde compounds. Thus lead deposits in the cylinder and on the spark plugs are minimized. Volatile lead hahdes (bromides or chlorides) would then exit the combustion chamber, and such volatile compounds would diffuse to catalyst surfaces by the same mechanisms as do carbon monoxide compounds. When adsorbed on the precious metal catalyst site, lead haUde renders the catalytic site inactive. [Pg.489]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

It is noteworthy that the best results could be obtained only with very pure ionic liquids and by use of an optimized reactor set-up. The contents of halide ions and water in the ionic liquid were found to be crucial parameters, since both impurities poisoned the cationic catalyst. Furthermore, the catalytic results proved to be highly dependent on all modifications influencing mass transfer of ethylene into the ionic catalyst layer. A 150 ml autoclave stirred from the top with a special stirrer... [Pg.250]

Alkanes and Alkenes. For this study, C150-1-01 and C150-1-03 were tested under primary wet gas conditions with ethylene, ethane, propylene, and propane being added to the feed gas. This study was made in order to determine whether these hydrocarbons would deposit carbon on the catalyst, would reform, or would pass through without reaction. The test was conducted using the dual-reactor heat sink unit with a water pump and vaporizer as the source of steam. All gas analyses were performed by gas chromatography. The test was stopped with the poisons still in the feed gas in order to preserve any carbon buildup which may have occurred on the catalysts. [Pg.67]

A similar reaction was studied by Kowaka Jfi) who investigated the catalytic activity of palladium and its alloys with silver in the hydrogenation of ethylene. The author alluded to the poisoning effect of hydrogen pretreatment of the palladium catalyst. [Pg.266]

Quite recently Yasumori el al. (43) have reported the results of their studies on the effect that adsorbed acetylene had on the reaction of ethylene hydrogenation on a palladium catalyst. The catalyst was in the form of foil, and the reaction was carried out at 0°C with a hydrogen pressure of 10 mm Hg. The velocity of the reaction studied was high and no poisoning effect was observed, though under the conditions of the experiment the hydride formation could not be excluded. The obstacles for this reaction to proceed could be particularly great, especially where the catalyst is a metal present in a massive form (as foil, wire etc.). The internal strains... [Pg.267]

Four members of the tetraponerine family (the major constituents of the contact poison of the New Guinean ant Tetraponera sp.) were prepared by RRM methods [156]. The key step leading to tetraponerine T7 (374) from the readily available cyclopentene precursor 372 is shown in Scheme 72. When compound 372 was exposed to catalyst A in the presence of ethylene, the desired ROM-RCM sequence proceeded smoothly to furnish heterocycle 373 with complete conversion, whereas the corresponding di-nosyl (2-nitrophenylsulfonyl)-protected analog of 372 led only to a 1 2 equilibrium mixture of starting material and RRM product. [Pg.342]

Ethylene glycol is common in automotive antifreeze mixtures. Because of its toxicity, it is sometimes replaced by propylene glycol, which is FDA approved for use in food, and is considered generally accepted as safe. Ethylene glycol has a sweet taste, and accidental poisoning in children is a danger. [Pg.43]

Despite the poisoning action of Cl for oxygen dissociative adsorption on Ag, it is used as moderator in the ethylene epoxidation reaction in order to attain high selectivity to ethylene oxide. The presence of Cl adatoms in this... [Pg.66]

The rate of peroxide decomposition and the resultant rate of oxidation are markedly increased by the presence of ions of metals such as iron, copper, manganese, and cobalt [13]. This catalytic decomposition is based on a redox mechanism, as in Figure 15.2. Consequently, it is important to control and limit the amounts of metal impurities in raw rubber. The influence of antioxidants against these rubber poisons depends at least partially on a complex formation (chelation) of the damaging ion. In favor of this theory is the fact that simple chelating agents that have no aging-protective activity, like ethylene diamine tetracetic acid (EDTA), act as copper protectors. [Pg.466]

Unbumt gasoline and cracked hydrocarbons such as ethylene and propylene are also substantial constituents of exhaust. Gasoline contains additives such as benzene, toluene and branched hydrocarbons to achieve the necessary octane numbers. The direct emission of these volatile compounds, e.g. at gas stations, is a significant source of air pollution. Leaded fuels, containing antiknock additions such as tetra-ethyl-lead, have been abandoned because lead poisons both human beings and the three-way exhaust catalyst, especially for the removal of NO by rhodium. [Pg.378]

Ethylene dehydrogenation was poisoned by oxygen, and direct hydrogen transfer reactions between water and oxygen and between methanol and oxygen were observed. [Pg.165]

The above described experiments over atomically clean single crystal catalysts have been extended to studies of the kinetics of various catalytic reactions over chemically modified catalysts. Examples are recent studies Into the nature of poisoning by sulfur of the catalytic activity of nickel, ruthenium, and rhodium toward methana-tlon of CO (11,12) and CO2 (15). ethane (12) and cyclopropane (20) hydrogenolysls, and ethylene hydrogenation (21). [Pg.190]


See other pages where Ethylene poisoning is mentioned: [Pg.1637]    [Pg.1636]    [Pg.1637]    [Pg.1636]    [Pg.67]    [Pg.361]    [Pg.252]    [Pg.398]    [Pg.291]    [Pg.479]    [Pg.480]    [Pg.481]    [Pg.422]    [Pg.76]    [Pg.459]    [Pg.272]    [Pg.63]    [Pg.796]    [Pg.68]    [Pg.109]    [Pg.110]    [Pg.264]    [Pg.269]    [Pg.271]    [Pg.283]    [Pg.91]    [Pg.665]    [Pg.817]    [Pg.853]    [Pg.78]    [Pg.175]    [Pg.185]   
See also in sourсe #XX -- [ Pg.152 , Pg.178 , Pg.181 , Pg.193 ]




SEARCH



Ethanol ethylene glycol poisoning

Ethylene glycol poisoning

Ethylene glycol poisoning from

Ethylene oxide poisoning

For ethylene glycol poisoning

© 2024 chempedia.info