Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene oxide, and

An example of mixed parallel and series reactions is the production of ethanolamines by reaction between ethylene oxide and ammonia ... [Pg.21]

An excess of ammonia in the reactor decreases the concentrations of monoetha-nolamine, diethanolamine, and ethylene oxide and decreases the rates of reaction for both secondary reactions. [Pg.51]

DIblook oopolymers of ethylene oxide and propylene oxide... [Pg.2579]

Oxygen enrichment of steel blast furnaces accounts for the greatest use of the gas. Large quantities are also used in making synthesis gas for ammonia and methanol, ethylene oxide, and for oxy-acetylene welding. [Pg.21]

Three membered rings that contain oxygen are called epoxides At one time epox ides were named as oxides of alkenes Ethylene oxide and propylene oxide for exam pie are the common names of two industrially important epoxides... [Pg.260]

Ethers like water and alcohols are polar molecules Diethyl ether for example has a dipole moment of 1 2 D Cyclic ethers have larger dipole moments ethylene oxide and tetrahydrofuran have dipole moments m the 1 7 to 1 8 D range—about the same as that of water (1 8D)... [Pg.667]

Nonreactive additive flame retardants dominate the flexible urethane foam field. However, auto seating appHcations exist, particularly in Europe, for a reactive polyol for flexible foams, Hoechst-Celanese ExoHt 413, a polyol mixture containing 13% P and 19.5% Cl. The patent beHeved to describe it (114) shows a reaction of ethylene oxide and a prereacted product of tris(2-chloroethyl) phosphate and polyphosphoric acid. An advantage of the reactive flame retardant is avoidance of windshield fogging, which can be caused by vapors from the more volatile additive flame retardants. [Pg.479]

Synthetic Polymers. Examples of polymers in this class include acrylamide—acryHc polymers and their derivatives, polyamines and their derivatives, poly-(ethylene oxide), and allylamine polymers. [Pg.32]

Two of the perfluoropolyether fluid stmctures yet to be commercialized are interesting. The first stmcture is a strictly alternating copolymer of ethylene oxide and methylene oxide, which has the longest Hquid range of any molecule containing carbon (40). The second stmcture is the perfluoromethylene oxide polyether which has low temperature Hquid properties down to —120° C ... [Pg.279]

Two types of magnesia, caustic-calcined and periclase (a refractory material), are derived from dolomitic lime. Lime is required in refining food-grade salt, citric acid, propjiene and ethylene oxides, and ethylene glycol, precipitated calcium carbonate, and organic salts, such as calcium stearate, lactate, caseinate. [Pg.178]

Diol Components. Ethylene glycol (ethane 1,2-diol) is made from ethylene by direct air oxidation to ethylene oxide and ring opening with water to give 1,2-diol (40) (see Glycols). Butane-1,4-diol is stiU made by the Reppe process acetylene reacts with formaldehyde in the presence of catalyst to give 2-butyne-l,4-diol which is hydrogenated to butanediol (see Acetylene-DERIVED chemicals). The ethynylation step depends on a special cuprous... [Pg.293]

When equal amounts of solutions of poly(ethylene oxide) and poly(acryhc acid) ate mixed, a precipitate, which appears to be an association product of the two polymers, forms immediately. This association reaction is influenced by hydrogen-ion concentration. Below ca pH 4, the complex precipitates from solution. Above ca pH 12, precipitation also occurs, but probably only poly(ethylene oxide) precipitates. If solution viscosity is used as an indication of the degree of association, it appears that association becomes mote pronounced as the pH is reduced toward a lower limit of about four. The highest yield of insoluble complex usually occurs at an equimolar ratio of ether and carboxyl groups. Studies of the poly(ethylene oxide)—poly(methacryhc acid) complexes indicate a stoichiometric ratio of three monomeric units of ethylene oxide for each methacrylic acid unit. [Pg.342]

A variety of substituted alkanolamines (Table 2) can also be made by reaction of oxide with the appropriate amine. Aminoethylethanolamine is made from the reaction of ethylenediamine [107-15-3J and ethylene oxide. Methyldiethanolamine is made from the reaction of ethylene oxide and methylamine [74-89-5J. Diethylethanolamine is made by the reaction of diethylamine [109-87-7] and ethylene oxide. [Pg.7]

CycHc sulfates can be prepared by a vahety of methods. Ethylene sulfate is obtained in low yield from ethylene oxide and sulfur thoxide (100). Methylene sulfate is produced from formaldehyde and sulfur thoxide (101). [Pg.201]

Heating the adduct of ethylene oxide and sulfur dioxide with primary alcohols in the presence of alkaH hydhdes or a transition-metal haHde yields dialkyl sulfites (107). Another method for the preparation of methyl alkyl sulfites consists of the reaction of diazomethane with alcohoHc solutions of sulfur dioxide (108). [Pg.201]

The stmcture of individual block polymers is deterrnined by the nature of the initiator (1,2-propanediol above), the sequence of addition of propylene and ethylene oxides, and the percentage of propylene and ethylene oxides in the surfactant. Thus, when the order of addition is reversed, a different stmcture is obtained in which the hydrophobic moieties are on the outside of the molecule. With ethylene glycol as the initiator, the reactions are as foUows ... [Pg.254]

Poly(methyl vinyl ether) [34465-52-6] because of its water solubility, continues to generate commercial interest. It is soluble in all proportions and exhibits a well-defined cloud point of 33°C. Like other polybases, ie, polymers capable of accepting acidic protons, such as poly(ethylene oxide) and poly(vinyl pyrroHdone), each monomer unit can accept a proton in the presence of large anions, such as anionic surfactants, Hl, or polyacids, to form a wide variety of complexes. [Pg.517]

Catalyst Selectivity. Selectivity is the property of a catalyst that determines what fraction of a reactant will be converted to a particular product under specified conditions. A catalyst designer must find ways to obtain optimum selectivity from any particular catalyst. For example, in the oxidation of ethylene to ethylene oxide over metallic silver supported on alumina, ethylene is converted both to ethylene oxide and to carbon dioxide and water. In addition, some of the ethylene oxide formed is lost to complete oxidation to carbon dioxide and water. The selectivity to ethylene oxide in this example is defined as the molar fraction of the ethylene converted to ethylene oxide as opposed to carbon dioxide. [Pg.193]

Similarly, ethylene oxide and 1,2-butylene oxide are used to make methyUiydroxy-ethylcellulose and methyUiydroxybutylcellulose, respectively. [Pg.277]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

In most cases, these active defoaming components are insoluble in the defoamer formulation as weU as in the foaming media, but there are cases which function by the inverted cloud-point mechanism (3). These products are soluble at low temperature and precipitate when the temperature is raised. When precipitated, these defoamer—surfactants function as defoamers when dissolved, they may act as foam stabilizers. Examples of this type are the block polymers of poly(ethylene oxide) and poly(propylene oxide) and other low HLB (hydrophilic—lipophilic balance) nonionic surfactants. [Pg.463]

Beta-Propiolactone. p-Propiolactone [57-57-8] was reported to be 4000 times more active than ethylene oxide, and 25 times more... [Pg.138]

Industrial ethanol is one of the largest-volume organic chemicals used in industrial and consumer products. The main uses for ethanol are as an intermediate in the production of other chemicals (Table 8) and as a solvent. As a solvent, ethanol is second only to water. Ethanol is a key raw material in the manufacture of dmgs, plastics, lacquers, poHshes, plasticizers, perfumes, and cosmetics. Around 1960, manufacture of ethanol was the top consumer of ethylene in the United States, but since 1965 it has rated below manufacture of ethylene oxide and polyethylene. [Pg.414]

Glathrate Formation. Ethylene oxide forms a stable clathrate with water (20). It is non stoichiometric, with 6.38 to 6.80 molecules of ethylene oxide to 46 molecules of water iu the unit cell (37). The maximum observed melting poiat is 11.1°C. An x-ray stmcture of the clathrate revealed that it is a type I gas hydrate, with six equivalent tetrakaidecahedral (14-sided) cavities fully occupied by ethylene oxide, and two dodecahedral cavities 20—34% occupied (38). [Pg.452]

With Water. Wurtz was the first to obtain ethylene glycol by heating ethylene oxide and water in a sealed tube (1). Later, it was noted that by-products, namely diethjlene and triethylene glycol, were also formed in this reaction (50). This was the first synthesis of polymeric compounds of well-defined stmcture. Hydration is slow at ambient temperatures and neutral conditions, but is much faster with either acid or base catalysis (Table 8). The type of anion in the catalyzing acid is relatively unimportant (58) (see Glycols). [Pg.453]

Oxathiane and -dithiane are formed from ethylene oxide and hydrogen sulfide at 200°C in the presence of an aluminum oxide catalyst (65). [Pg.453]


See other pages where Ethylene oxide, and is mentioned: [Pg.50]    [Pg.320]    [Pg.14]    [Pg.180]    [Pg.477]    [Pg.27]    [Pg.354]    [Pg.354]    [Pg.359]    [Pg.362]    [Pg.304]    [Pg.343]    [Pg.343]    [Pg.344]    [Pg.67]    [Pg.88]    [Pg.254]    [Pg.266]    [Pg.275]    [Pg.276]    [Pg.463]    [Pg.44]    [Pg.137]   
See also in sourсe #XX -- [ Pg.510 ]




SEARCH



Block copolymers of ethylene and propylene oxide

Composite polymer electrolytes based on poly(ethylene oxide) and non-ionic fillers

Ethylene Oxide and Epichlorohydrin Building Blocks in Organic Synthesis

Ethylene and propylene, oxidation

Ethylene oxide surfactants and

Grignard reagent and ethylene oxide

Oxidation of ethylene and propylene

Photodegradation and Oxidation of Poly (ethylene terephthalate) (PET)

© 2024 chempedia.info