Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene construction materials

Fluorinated polymers stand out sharply against other construction materials for their excellent corrosion resistance and high-temperature stability. In this respect they are not only superior to other plastics but also to platinum, gold, glass, enamel and special alloys. The fluorinated plastics used in process plants are polytetrafluorethylene (PTFE), fluorinated ethylene/ propylene (FEP), polytrifiuoromonochlorethylene (PTFCE) and polyvinyl fluoride (PVF). They are much more expensive than other polymers and so are only economical in special situations [59]. [Pg.116]

The chemical uses for ethylene prior to World War II were limited, for the most part, to ethylene glycol and ethyl alcohol. After the war, the demand for styrene and polyethylene took off, stimulating ethylene production and olefin plant construction. Todays list of chemical applications for ethylene reads like the WTiat s What of petrochemicals polyethylene, ethylbenzene (a precursor to styrene), ethylene dichloride, vinyl chloride, ethylene oxide, ethylene glycol, ethyl alcohol, vinyl acetate, alpha olefins, and linear alcohols are some of the more commercial derivatives of ethylene. The consumer products derived from these chemicals are found everywhere, from soap to construction materials to plastic products to synthetic motor oils. [Pg.82]

Screening tests were conducted on potential construction materials. The candidate materials evaluated included the following polytetrafluoroethylene (PTFE, TFE), fluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy-alkanes (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (E-CTFE), poly vinylidene fluoride (PVDF), polypropylene (PP), and polyvinyl chloride (PVC). These materials were chosen based on cost, availability, and information from manufacturers on compatibility with acid solutions. [Pg.317]

The techniques of preparation and of separation of hydrocarbons were improved. New construction materials led to cracking being conducted under more severe conditions, to increase the amount of olefins produced.. This also permitted a change from propane to ethane as the raw material for ethylene synthesis. Aromatics became available from petroleum naphthenes. Diolefins and acetylene were also manufactured from petroleum sources. [Pg.323]

When investigating the abstracts, an article should not be eliminated on the basis of a title alone for these are often deceptive. For example an article entitled The Utilization of Benzene may contain detailed information on its commercial production. An article entitled XYZ Company produces 180,000,000 million lbs. of ethylene may simply be an announcement that the plant is operating, but again, it may contain a highly detailed description of the plant itself, construction materials used therein, and results of operations. More Propane Recovery may be merely a half-column story stating that more propane is being recovered from a specific plant, but it could also be a highly technical article on how the result is accomplished. [Pg.365]

Construction Materials. Superabsorbent polsrmers are used to control liquid water in a variety of construction-related products. Joint-sealing composites are made by blending superabsorbents into chloroprene rubber (54) or into poly(ethylene-co-vinyl acetate) (55). These composites are used like mortar in the concrete block walls of the structure. Gaps left during construction are subsequently filled as the superabsorbent swells in any water, and subsequent leaks are prevented. A water-blocking construction backfill has also been developed from cement, water absorbing polymer, and an asphalt emulsion (56). [Pg.8035]

Important applications for titanium have been developed in processes involving acetic acid, malic acid, amines, urea, terephthalic acid, vinyl acetate, and ethylene dichloride. Some of these represent large scale use of the material in the form of pipework, heat exchangers, pumps, valves, and vessels of solid, loose lined, or explosion clad construction. In many of these the requirement for titanium is because of corrosion problems arising from the organic chemicals in the process, the use of seawater or polluted cooling waters, or from complex aggressive catalysts in the reaction. [Pg.875]

Fignre 27.3 shows a typical spectroelectrochemical cell for in sitn XRD on battery electrode materials. The interior of the cell has a construction similar to a coin cell. It consists of a thin Al203-coated LiCo02 cathode on an aluminum foil current collector, a lithium foil anode, a microporous polypropylene separator, and a nonaqueous electrolyte (IMLiPFg in a 1 1 ethylene carbonate/dimethylcarbonate solvent). The cell had Mylar windows, an aluminum housing, and was hermetically sealed in a glove box. [Pg.472]

The patterned amine materials have been used to construct CGC-inspired sites that were evaluated in the catalytic polymerization of ethylene after activation with MAO. The complexes assembled on a porous silica surface using this methodology are more active than previously reported materials prepared on densely-loaded amine surfaces. This increased activity further suggests the isolated, unique nature of the metal centers. Work is continuing in our laboratory to further characterize the nature of the active sites, as well as to obtain more detailed kinetic data on the catalysts. The patterning methodology is also being applied to the creation of immobilized catalysts for small molecule reactions, such as Heck and Suzuki catalysis. [Pg.277]

PVC. Poly(vinyl chloride) (PVC), a very versatile polymer, is manufactured by the polymerization of vinyl chloride monomer, a gaseous substance obtained from the reaction of ethylene with oxygen and hydrochloric acid. In its most basic form, the resin is a relatively hard material that requires the addition of other compounds, commonly plasticizers and stabilizers as well as certain other ingredients, to produce the desired physical properties for roofing use. The membranes come in both reinforced and nonreinforced constructions, but since the 1980s the direction has been toward offering only reinforced membranes. The membrane thickness typically runs from 0.8—1.5 mm and widths typically in the range of 1.5—4.6 m. [Pg.214]

Ethylene oxide is an important fuel for FAEs and has proved its potential as one of the best fuels for them. It has wide explosive limits and low boiling point (10.5 °C) which facilitates its vaporization faster at room temperature and results in the formation of a cloud with air which is detonated. However, EO has a tendency to polymerize during storage thereby decreasing its shelf-life as well as the performance of EO-based weapons. The phenomenon of polymerization of EO, effect of temperature and materials of construction of weapons on polymerization and retardation of EO polymerization by the addition of well-known anti-oxidants have been studied by Agrawal et al. [293]. The addition of anti-oxidants retards EO polymerization and enhances the shelf-life of EO but does not meet the requirements of the Services, stipulating a shelf-life of minimum 10 years for... [Pg.145]

The large volume solvents, trichloroethylene and perchloroethylene, are still chiefly made from acetylene, but appreciable amounts of the former are derived from ethylene. The competitive situation between these source materials runs through the whole chlorinated hydrocarbon picture, and extends on to other compound classes as well—for example, acrylonitrile is just on the threshold of a severalfold expansion, as demand grows for synthetic fibers based thereon. Acrylonitrile can be made either from ethylene oxide and hydrogen cyanide, from acetylene and hydrogen cyanide, or from allylamines. The ethylene oxide route is reported to be the only one in current commercial use, but new facilities now under construction will involve the addition of hydrogen cyanide to acetylene (27). [Pg.293]

Implantable prosthetic bearings may be constructed from a composite material having a first layer and a second layer (20). The first layer has an articulating surface defined therein, whereas the second layer has an engaging surface defined therein for engaging either another prosthetic component or the bone itself. The first layer is constructed of a UHMWPE, whereas the second layer is constructed of a copolymer of ethylene and an acrylate. [Pg.87]

Under the assumptions of naphtha price and aromatics value stated above, naphtha pyrolysis clearly would be superior to light hydrocarbon pyrolysis at their current feed prices. A similar analysis can probably be made also for gas oil. Thus, if the possible developments discussed above do materialize, the heavier feeds could probably dominate almost all new U.S. ethylene plant construction in the future. [Pg.190]

Cables are available in a variety of constructions and materials, in order to meet the requirements of industry specifications and the physical environment. For indoor usage, such as for Local Area Networks (LAN), the codes require that the cables should pass very strict fire and smoke release specifications. In these cases, highly flame retardant and low smoke materials are used, based on halogenated polymers such as duorinated ethylene—propylene polymers (like PTFE or FEP) or poly(vinyl chloride) (PVC). For outdoor usage, where fire retardancy is not an issue, polyethylene can be used at a lower cost. [Pg.323]

The materials of construction of the radiant coil are highly heat-resistant steel alloys, such as Sicromal containing 25% Cr, 20% Ni, and 2% Si. Triethyl phosphate [78-40-0] catalyst is injected into the acetic acid vapor. Ammonia [7664-41-7] is added to the gas mixture leaving the furnace to neutralize the catalyst and thus prevent ketene and water from recombining. The crude ketene obtained from this process contains water, acetic acid, acetic anhydride, and 7 vol % other gases (mainly carbon monoxide [630-08-0], carbon dioxide [124-38-9], ethylene [74-85-1], and methane [74-82-8]). The gas mixture is chilled to less than 100°C to remove water, unconverted acetic acid, and the acetic anhydride formed as a liquid phase (52,53). [Pg.475]

Chlorohydrin Process. Ethylene oxide is produced from ethylene chlorohydrin by dehydrochlorination using either sodium or calcium hydroxide (160). The by-products include calcium chloride, dichloroethane, bis(2-chloroethyl) ether, and acetaldehyde. Although the chlorohydrin process appears simpler, its capital costs are higher, largely due to material of construction considerations (197). [Pg.460]


See other pages where Ethylene construction materials is mentioned: [Pg.303]    [Pg.358]    [Pg.162]    [Pg.198]    [Pg.151]    [Pg.620]    [Pg.10]    [Pg.316]    [Pg.34]    [Pg.198]    [Pg.648]    [Pg.62]    [Pg.322]    [Pg.137]    [Pg.74]    [Pg.154]    [Pg.54]    [Pg.642]    [Pg.643]    [Pg.520]    [Pg.146]    [Pg.189]    [Pg.332]    [Pg.368]    [Pg.158]    [Pg.165]    [Pg.86]    [Pg.459]    [Pg.388]    [Pg.49]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Construction materials

Constructional materials

Ethylene oxide construction materials

© 2024 chempedia.info